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ABSTRACT 
 

Previous work examining dual-polarization (dual-pol) radar signatures of supercells has shown that 

differential reflectivity (ZDR) column area, hailfall area and specific differential phase (KDP)–ZDR separation 

angles may differ between tornadic and nontornadic storms.  However, these signatures often can be 

difficult to quantify quickly enough to enable their use in forecasting operations, and little work has been 

done examining how these characteristics vary with environmental parameters in large samples of observed 

storms.  This paper introduces the Supercell Polarimetric Observation Research Kit (SPORK) as an update 

to our automated ZDR arc-detection algorithm.  This update adds the capability to identify ZDR column and 

inferred hailfall signatures in supercells automatically, and quickly quantify their characteristics.  Dual-pol 

metrics calculated by SPORK are compared to manually calculated dual-pol metrics from previous work.  

SPORK is run on a large sample of supercells to examine whether SPORK-calculated dual-pol metrics 

exhibit the same differences between tornadic and nontornadic supercells seen in manual analyses.  Storm-

mean dual-pol metrics obtained from SPORK also are used to evaluate how supercell dual-pol metrics vary 

with different environmental parameters.  Results from SPORK support previous findings that tornadic 

supercells have larger ZDR column areas, smaller hailfall areas, and larger KDP–ZDR separation angles than 

nontornadic storms.  Additionally, ZDR columns tend to be larger and deeper in more conditionally unstable 

environments.  Hailfall areal extents are larger in environments with lower environmental 0ºC levels, 

higher LCLs and LFCs, and less SRH.  Separation angles are larger in environments with larger low-level 

shear vectors, SRH and lower lifted condensation levels (LCLs) and levels of free convection (LFCs). 

However, none of these correlations exceed r = 0.52.  Overall, our results indicate that SPORK can 

quantify supercell dual-pol signatures accurately enough to detect potentially useful differences between 

dual-pol signatures of pretornadic and nontornadic supercells, and provide a first look at how dual-pol 

signatures vary with environmental characteristics in a large sample of supercells. 
 

–––––––––––––––––––––––– 

 

1.  Introduction 

 

Supercell storms produce the most tornadoes 

of any convective mode, and the vast majority of 

strong tornadoes (Duda and Gallus 2010; Smith 

et al. 2012), yet most are nontornadic (Trapp et 

al. 2005).  Thus, distinguishing between tornadic 

and nontornadic supercells is an important area 

of ongoing research.  Supercells are more likely  

          ____________________________ 

Corresponding author address: Matthew B. 

Wilson, University of Nebraska-Lincoln, E-mail: 

mwilson41@huskers.unl.edu  

 

to produce tornadoes in environments with large 

low-level storm relative helicity (SRH), strong 

low-level shear, low lifted condensation levels 

(LCLs), and large values of low-level instability 

(Thompson et al. 2003; Hampshire et al. 2018; 

Coffer et al. 2019).  However, tornadic and 

nontornadic supercells often exist near each 

other, in ostensibly the same environment (Klees 

et al. 2016), limiting the utility of these 

environmental parameters in determining which 

storms are likely to produce a tornado. 

Supercells can also induce perturbations to their 
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environments that may affect a given storm’s 

likelihood of producing a tornado (Parker 2014; 

Wade et al. 2018; Coniglio and Parker 2020; 

Flournoy et al. 2020).  Environmental boundaries 

or heterogeneities (that may not be resolved well 

by numerical models) also can play an important 

role in tornado formation (e.g., Maddox et al. 

1980; Markowski et al. 1998; Atkins et al. 1999; 

Ziegler et al. 2010; Magee and Davenport 2020).   

 

Furthermore, the internal dynamics of a 

supercell—for example, the buoyancy of the 

rear-flank outflow (Markowski et al. 2002; 

Weiss et al. 2015), the baroclinic generation of 

surface vertical vorticity and near-surface 

streamwise vorticity in the storm’s cold pool 

(Klemp and Rotunno 1983, Rotunno and Klemp 

1985, Markowski et al. 2008, Orf et al. (2017)), 

and cyclic mesocyclogenesis (Lemon and 

Doswell 1979; Adlerman et al. 1999; Dowell and 

Bluestein 2002)—can also influence whether a 

given storm is likely to produce a tornado in the 

near future.  Since these factors are often not 

detectable using operationally available 

observations or model output, any source of data 

that might provide insight into these processes 

with a given supercell may be useful to 

forecasters. 

 

     One source of data that may help is dual-

polarization (hereafter dual-pol) radar. Much 

recent work has focused on examining the 

unique dual-pol signatures found in supercell 

storms (Romine et al. 2008; Kumjian and 

Ryzhkov 2008, 2009; Van Den Broeke et al. 

2008; Kuster et al. 2019; Homeyer et al. 2020; 

Van Den Broeke 2016, 2020, (hereafter VDB16, 

VDB20)).  Several of these signatures have 

exhibited potentially useful differences between 

severe and nonsevere storms and between 

tornadic and nontornadic supercells, including 

differential reflectivity (ZDR) columns (VDB20, 

Kuster et al. 2019, 2020), inferred hailfall area 

(VDB16, VDB20), and the separation between 

areas of enhanced ZDR and specific differential 

phase (KDP) (Crowe et al. 2012; Loeffler and 

Kumjian 2018; Loeffler et al. 2020; Homeyer et 

al. 2020).  A brief description of each of these 

signatures and the potential connections between 

their characteristics and a given supercell’s 

hazard production is given below. 

 

ZDR columns are areas of positive ZDR that 

extend above the environmental 0ºC level within 

a storm, and represent large raindrops and/or 

small, wet ice particles lofted above the 

environmental 0ºC level by the storm’s updraft 

(Brandes et al. 1995; Loney et al. 2002; Kumjian 

et al. 2014; Snyder et al. 2015). ZDR column 

location, area, and depth can be used as a proxy 

for updraft location and strength, which may 

provide valuable information about a given 

storm’s potential to produce severe weather.  

Kuster et al. (2019) used an automated ZDR 

column depth algorithm developed by Snyder et 

al. (2015) to examine ZDR column characteristics 

in a large sample of storms from central 

Oklahoma, and found that severe storms had 

wider and deeper ZDR columns than nonsevere 

storms.  A peak in ZDR column area preceded a 

majority of severe hail and wind reports in their 

sample of storms; however, they did not find 

substantial differences between the 

characteristics of ZDR columns associated with 

tornadic and nontornadic mesocyclones, possibly 

due to the small number of tornadoes (17) 

included in their sample. 

 

     In contrast, recent work (VDB20, VDB17, 

and French and Kingfield 2021) comparing 

larger samples (n = 63, n = 35, and n = 198, 

respectively) of tornadic and nontornadic 

supercells has found that ZDR columns in 

tornadic supercells, just prior to tornadogenesis, 

tend to be larger than in nontornadic supercells.  

Supercells that produce stronger tornadoes also 

have larger ZDR columns.  VDB20 found that 

tornadic supercells had larger and less variable 

ZDR column areas in the 30 min prior to 

tornadogenesis than nontornadic supercells.   

VDB17 also found that supercells producing EF3 

or stronger tornadoes had larger, steadier ZDR 

columns than those with only EF0 tornadoes.  

Similarly, French and Kingfield (2021) found 

ZDR columns were larger in tornadic supercells 

on radar scans during or immediately preceding 

tornadogenesis compared to nontornadic 

supercells during or immediately preceding peak 

0–1-km azimuthal shear.  Furthermore, they also 

found that supercells that went on to produce 

EF3 or stronger tornadoes had larger ZDR 

columns on radar scans at or immediately 

preceding tornadogenesis compared to storms 

with weaker tornadoes.  As discussed by French 

and Kingfield (2021), these results match well 

with previous work showing that stronger 

tornadoes come from broader pretornadic 

mesocyclones.  Physically, this may be due to 

the larger size of updrafts and associated 

downdrafts in storms with broader 

mesocyclones.  Greater updraft size allows larger 

areas of near-surface vertical vorticity in the 
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outflow, through the feet-first tilting of 

baroclinic horizontal vorticity.  That, in turn, 

converges and stretches into stronger low-level 

mesocyclones and tornadoes (Trapp et al. 2017, 

Sessa and Trapp 2020). 

 

    Areas within a storm where the dominant 

scatterer type is large hail can often be identified 

at S band by large values of reflectivity (>50–55 

dBZ) paired with relatively low values of ZDR 

(<0.5–1 dB, Ryzhkov et al. 2013, Snyder et al. 

2017).  Kumjian and Ryzhkov (2008) examined 

a small sample (n = 15) of tornadic and 

nontornadic supercells and found that the 

presence of a large-hail signature in the storm 

core was less consistent in tornadic supercells.  

This may be due to more frequent disruption of 

the midlevel updraft by rotationally induced 

downward-directed perturbation pressure 

gradient forces, from the stronger low-level 

rotation in tornadic storms.  Results from a 

similar small sample of supercells (n = 25 across 

12 environments) examined by VDB16 also 

noted greater variability in the area of 

polarimetrically inferred large hail (referred to 

here as hailfall area for brevity) in tornadic 

supercells than in nontornadic storms.  In a larger 

sample of supercells, VDB20 found that the 

inferred hailfall area was smaller in pretornadic 

supercells than in nontornadic storms.  

Maximum storm-core reflectivity was also 

higher in nontornadic storms than in pretornadic 

storms, potentially due to the greater quantities 

of hail present in nontornadic supercells 

(VDB20).  The larger amounts of hail present at 

low levels in nontornadic supercells could 

indicate that these storms have colder outflow 

temperatures, which may hinder tornadogenesis 

(Markowski et al. 2002; Weiss et al. 2015).  

 

Size sorting of rain and melting hail by the 

storm-relative wind often leads to a pronounced 

area of enhanced ZDR along the edge of the 

storm’s forward flank, known as the ZDR arc (e.g, 

Kumjian and Ryzhkov 2008, 2009; Dawson et 

al. 2014, 2015), as well as a pronounced 

horizontal separation between the ZDR arc and an 

area of enhanced KDP in the storm core known as 

the KDP foot (Romine et al. 2008; Crowe et al. 

2010, 2012; Loeffler and Kumjian 2018; Loeffler 

et al. 2020).  While the maximum value of ZDR in 

the ZDR arc was initially thought to be correlated 

to the strength of low-level storm-relative 

helicity in a supercell’s inflow (Kumjian and 

Ryzhkov 2009) and could be of use in 

identifying storms that are more likely to be 

tornadic, subsequent work revealed that ZDR arc 

size and intensity tend to differ little between 

tornadic and nontornadic storms (VDB20). 

 

     However, the separation between the ZDR arc 

and KDP foot has shown more promise in 

distinguishing between tornadic and nontornadic 

storms.  Loeffler and Kumjian (2018) found that 

a vector drawn from the centroid of the KDP foot 

to the centroid of the ZDR arc (referred to as the 

separation vector) in tornadic nonsupercell 

storms tended to be closer to perpendicular to 

storm motion for a given vector length when 

low-level SRH was higher.  In a larger sample of 

supercells (n = 116), Loeffler et al. (2020) found 

that the separation vector was closer to 

perpendicular to storm motion in tornadic storms 

than in nontornadic storms.  Similarly, Homeyer 

et al. (2020) found a separation between areas of 

enhanced KDP and ZDR that was more 

perpendicular to storm motion in storm-centered 

radar composites of tornadic supercells than 

storm-centered composites of nontornadic 

supercells in a large sample of supercells 

(n = 772, with 490 having dual-pol data). 

 

Idealized modeling by Loeffler and Kumjian 

(2020) showed that separation-vector length and 

direction were well-correlated to the 0–3-km 

storm-relative wind speed and direction, and that 

a custom size-sorting parameter combining 

separation-vector length and orientation angle 

correlated well with low-level SRH.  However, it 

is not known how well the correlations between 

separation-vector characteristics and 

environmental parameters from these idealized 

experiments will generalize to observed 

supercells, in a variety of thermodynamic and 

kinematic environments.   Furthermore, Van Den 

Broeke (2021) also found that separation angles 

did not differ meaningfully between pretornadic 

supercells and nontornadic storms with strong 

low-level mesocyclones, in the 30 min before 

their peak low-level rotation.  Healey and Van 

Den Broeke (2022) found that tornadic 

supercells did not have meaningfully different 

separation angles from nearby nontornadic 

supercells on the same day.  However, direct 

comparisons between these two studies and the 

results of Homeyer et al. (2020) and Loeffler et 

al. (2020) are difficult, since they have smaller 

sample sizes (n = 63 and n = 46 tornadic-

nontornadic pairs, respectively), and different 

selection criteria for nontornadic supercells, than 

Homeyer et al. (2020) and Loeffler and Kumjian 

(2020).      
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While all three of these signatures show 

promise in helping to differentiate between 

tornadic and nontornadic supercells, quantifying 

them quickly and accurately enough to be useful 

in analyzing a supercell in real time can be 

difficult.  Two approaches can help alleviate this 

problem:  choosing metrics for the signatures 

that are easier to calculate in real time, or 

developing automated methods to detect and 

analyze these signatures.  The first approach was 

taken by Kuster et al. (2020), who evaluated the 

feasibility of replicating the results of Kuster et 

al. (2019) with ZDR column depth metrics that 

can more easily be determined in real time by 

forecasters.  They found that these ZDR column 

depth metrics are still useful in differentiating 

between severe and nonsevere storms; however, 

they did not analyze ZDR column area, since 

doing so manually would be too time-consuming 

in real-time warning operations.   

 
Several recent papers have taken the second 

approach of designing automated or semi-

automated algorithms to detect and quantify 

supercell dual-pol signatures.  Snyder et al. 

(2015) designed an automated algorithm to 

calculate ZDR column depth and display it as a 

2-dimensional field for forecasters to examine.  

French and Kingfield (2021) introduced an 

automated algorithm to calculate ZDR column 

area in supercells.  However, the latter still 

required manual intervention in cases where a 

ZDR column was composed of multiple areas of 

enhanced ZDR.  For low-level signatures of size 

sorting, Loeffler and Kumjian (2018) built a 

semi-automated algorithm to calculate the 

separation vector between areas of enhanced 

ZDR and KDP in nonsupercell storms, that was 

then applied to supercells by Loeffler et al. 

(2020).   

 
Finally, Wilson and Van Den Broeke (2021, 

hereafter WV21) presented an automated 

algorithm for detecting ZDR arcs and KDP–ZDR 

separation signatures in right-moving supercells, 

and quantifying their characteristics.  For the 

convenience of researchers and potentially the 

eventual use of forecasters, it would be 

advantageous to have an algorithm that could 

automatically identify and quantify multiple 

supercell dual-pol signatures at once.  Thus, this 

paper will build on the algorithm presented by 

WV21, with an improved Python algorithm 

called the Supercell Polarimetric Observation 

Research Kit (SPORK).  SPORK is capable of 

quantifying the supercell dual-pol features that 

may be the most useful in differentiating 

between tornadic and nontornadic storms:  ZDR 

columns, inferred hailfall areas, and KDP–ZDR 

separation signatures.  SPORK then will be used 

to answer the following questions: 

1. Can SPORK successfully identify the 

differences between tornadic and nontornadic 

supercell dual-pol signatures noted by 

VDB20, Loeffler et al. (2020) and Homeyer 

et al. (2020)? 

2. How do dual-pol signatures vary with the 

characteristics of a supercell’s environment? 

 
Question 1 extends research comparing 

manual analyses of supercell dual-pol signature 

differences between tornadic and nontornadic 

supercells (VDB20, Loeffler et al. 2020; 

Homeyer et al. 2020), to focus on automated 

analyses of these signatures in a larger sample 

of storms. Question 2 focuses on conducting a 

novel analysis of how dual-pol signatures vary 

in different environments.  The relationship 

between ZDR arc and KDP–ZDR separation 

signature characteristics and low-level wind 

field characteristics has been examined (e.g., 

Kumjian and Ryzhkov 2008, 2009; Dawson et 

al. 2014, 2015; Loeffler and Kumjian 2018, 

2020); however, comparatively little is known 

about how these and other dual-pol signatures 

vary with other environmental parameters 

outside of the small sample of storms examined 

by VDB16.  To answer these questions, Section 

2 of this paper describes the design of SPORK 

and its validation against manually calculated 

dual-pol metrics from the dataset used by 

VDB20.  Section 2 also describes methods used 

to select the 206 supercell cases, and proximity 

soundings used in the comparison between 

pretornadic and nontornadic storms and in the 

analysis of how the dual-pol metrics vary with 

different environmental parameters.  Section 3 

describes how algorithm-calculated dual-pol 

signatures differ between the pretornadic and 

nontornadic datasets, how the differences in 

algorithm-identified signatures compare to 

those found in previous work, and how they 

correlate to each other and various 

environmental parameters.  Finally, section 4 

summarizes our findings and discusses potential 

future research questions and algorithm 

applications based on these results. 
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2.  Data and methods 

 

a.   Algorithm design 

 

SPORK uses the ZDR arc and KDP–ZDR 

separation algorithm presented by WV21 as a 

starting point and adds the capability to 

automatically identify ZDR columns and inferred 

hailfall signatures.  For this study, ZDR columns 

are defined as areas of ZDR >1 dB (instead of the 

0.5-dB threshold used by VDB20) at 1 km above 

the environmental 0ºC level in a supercell’s 

updraft region.  Polarimetrically inferred hailfall 

is defined as regions with Z above 50 dBZ and 

ZDR below 1 dB, within the storm’s core (chosen 

to be similar to the high Z/ZDR below 1-dB 

criteria used by VDB16 and VDB20).  The 1-dB 

ZDR threshold for automated column 

identification was chosen after initial testing, 

with a 0.5-dB threshold on a number of cases, 

showed that it tended to identify large, 

amorphous areas as columns that extended well 

outside of what would typically be subjectively 

identified as the ZDR column core.  A 1-dB 

threshold did a much better job of identifying 

features consistent with subjectively defined ZDR 

columns.   

 

Radar-data ingestion, ZDR calibration, storm 

tracking, assignment of dual-pol signatures to 

storms, and KDP–ZDR separation signature 

calculations are all conducted as in WV21, with 

two key differences.  Firstly, full volumetric 

radar data are used instead of just the lowest-

level scan, since full radar volumes are needed to 

identify ZDR columns.  These data are 

interpolated to a grid with 500-m horizontal and 

250-m vertical grid spacing, centered on the 

radar site using a Barnes interpolation scheme 

from the Python ARM Radar Toolkit (PyART, 

Helmus and Collis 2016).  Secondly, storm 

identification and KDP–ZDR signature calculations 

use 1-km above radar level (ARL) constant 

altitude plan position indicators (CAPPIs), 

instead of the lowest radar tilt.  To remove 

regions of high ZDR associated with three-body 

scattering signatures (TBSSs, Zrnić 1987), ZDR 

data used for ZDR column detection are masked 

where Z is <20 dBZ or cross-correlation 

coefficient (CC) is <0.70. 

 

As a final pre-processing step before the 

identification of ZDR column and hailfall objects, 

a planar field of ZDR column depth is calculated 

using a simplified Python implementation of the 

ZDR column depth calculation described by 

Snyder et al. (2015).  Starting from the grid level 

closest to the environmental 0ºC level obtained 

from a proximity Rapid Refresh model (RAP) 

sounding, the number of continuous grid points 

in the vertical above that level with ZDR >1 dB 

are counted for each grid point in the horizontal.  

These counts are then multiplied by the 250-m 

vertical grid spacing to estimate ZDR column 

depth at each point.  One possible limitation of 

this approach is that the vertical-continuity 

requirement may lead to underestimated 

maximum column depth in highly tilted ZDR 

columns of fast-moving supercells. 

 

Table 1:  Variables saved for each potential 

column object for use in the random-forest (RF) 

algorithm.  Normalized storm centroid–object 

centroid distances are calculated by dividing the 

distance between the column-object centroid and 

the centroid of the associated storm object by the 

radius of a circle with the same area as the storm 

object.  The forward-flank downdraft (FFD) 

vector is calculated as in WV21 as a vector 

perpendicular to the edge of the FFD Z gradient 

pointing from the core into the inflow region.  

Storm area is obtained from the tracking 

algorithm, and is the area within the Z contour 

used by the tracking algorithm to define the 

storm object. 

 

Column-object RF Predictors 

Column Area (km
2
) 

Normalized Storm Centroid–Column-object 
Centroid Distance 

Mean ZDR Value at 1 km above 0ºC (dB) 

Max ZDR Value at 1 km above 0ºC (dB) 

Mean CC Value at 1 km above 0ºC 

Mean KDP Value at 1 km ARL (deg km
–1

) 

Mean Z Value at 1 km above 0ºC (dBZ) 

Mean Z Gradient Direction Relative to FFD Vector 
Direction at 1 km ARL (deg) 

Mean Z Gradient Value at 1 km ARL (dBZ km
 –1

) 

Max Column Depth (km) 

Mean Column Depth (km) 

Mean KDP Value at 1km above 0ºC (deg km 
–1

) 

Storm Area (km
2
) 

Normalized X-Component of Storm Centroid–
Column-object Centroid Distance 

Normalized Y-Component of Storm Centroid–
Column-object Centroid Distance 
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Figure 1:  Schematic showing the process of identifying ZDR column objects for each storm.  In step 1 

(panel a), a 1-dB ZDR contour is drawn at 1 km above the environmental 0ºC level (Z0C).  In step 2 (panel 

b), that contour is split into separate polygons, and each polygon is then assigned to the nearest storm 

object from the storm tracking algorithm before the metrics listed in Table 1 are calculated for it. In step 3 

(panel c), the random forest algorithm is used to remove spurious column objects (denoted here with thin 

purple outlines).  Finally, in step 4 (panel d), the remaining column objects associated with each storm 

object are combined into a single object, and column area, mean column depth, and maximum column 

depth are then calculated using all points within the multi-polygon final object. 

 

Once the data pre-processing is completed, 

preliminary ZDR column objects are identified by 

drawing a 1-dB ZDR contour at 1 km above the 

environmental 0ºC level, splitting the contour 

into individual polygons, and assigning the 

polygons to the nearest storm object following 

the methodology of WV21 (Fig. 1a, b).  At this 

stage, supercells often have multiple associated 

ZDR column objects, not all of which are actually 

associated with that particular storm’s updraft 

region.  For example, these spurious objects may 

be associated with a nearby, nonsupercellular 

storm, or with a left-moving storm in the process 

of splitting from the storm of interest.  To 

remove these spurious column objects, a 

random-forest algorithm was trained on a dataset 

of manually labeled actual and spurious ZDR 

column objects, using predictors extracted from 

each object and listed in Table 1.  Once trained 

on labeled objects from the 20 supercells used in 

WV21’s training dataset, the resulting random 

forest achieved a probability of correct detection 

(POD) of 91.2 percent, on a dataset of 

1129 actual and 956 spurious column objects 

from the 51-supercell test dataset in WV21, with 

a false alarm rate (FAR) of 13.2 percent.  

Plotting the location of all classified objects from 

the testing dataset along with the 40-dBZ outline 

of a supercell for reference shows that the 

algorithm correctly classifies almost all ZDR 

column objects located near the supercell’s hook 

echo and inflow notch regions as ZDR columns 

(Fig. 2).  Additionally, many of the missed 

detections are small areas of ZDR located on the 

periphery of this region that might be easily 

missed by a human analyst as well, and many of 

the false detections classified as columns by the 

algorithm are large areas of ZDR that are in a 

storm-relative location where one might 

normally expect to find a ZDR column.  Once 

trained, this random forest algorithm is used to 

remove spurious column objects.  Once these are 

removed, any remaining column objects 

associated with a given storm are combined into 

a single column object, and ZDR column area, 

mean depth, and maximum depth are then 

calculated for that object (Fig. 1c, d) 
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Figure 2:  Storm-relative plot of preliminary ZDR column objects classified by the random forest from the 

testing dataset.  Centroids of ZDR column objects correctly detected by the algorithm are plotted in blue, 

false detections are plotted in green, missed ZDR columns are plotted in yellow, and correctly classified non-

column objects are red. Dot sizes are proportional to the object areas.  The thick black outline is a 

composite 40-dBZ outline from the 206 supercells examined in section 3b of this paper, and the FFD vector 

points to the top of the plot.  The grey dot in the middle is the storm centroid. Range rings of storm-radius-

normalized distance from storm centroid are plotted in increments of 1 and are unitless. 

 

To identify dual-pol hailfall signatures at 1 

km ARL, a contour is drawn on the 1 km ARL 

CAPPI around all areas where Z >50 dBZ is 

collocated with ZDR <1 dB. This contour is 

broken into individual closed polygons to create 

hailfall objects.  Each hailfall object is then 

assigned to the closest storm object within 15 

km.  This distance threshold is chosen to help 

ensure that hailfall objects from neighboring 

storms are not accidentally included.  Manual 

inspection of initial test cases showed that false 

detections of hailfall objects tended to be much 

less common than for ZDR column objects; thus, 

a random-forest algorithm was not needed to 

remove them.  Once all hailfall objects are 

assigned to the closest storm, hailfall objects 

assigned to the same storm object are 

consolidated into a single hailfall object, and 

inferred hailfall area values are then calculated 

and saved for each storm object.  
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The current version of SPORK is available at 

https://github.com/mwilson14/SPORK-SPIN and 

can be run using example Python scripts available 

on that site.  To run SPORK for a given case, a 

user must input the radar site, a start time, case 

duration, environmental 0ºC level, a storm-motion 

estimate, and information about the orientation of 

the forward-flank reflectivity gradient for the 

supercell of interest.  Options are also available to 

include a ZDR calibration and modify the 

thresholds used to define the ZDR arc and KDP foot.  

Once SPORK has been run for a given case, it 

saves all dual-pol metrics for each tracked storm 

to a Pandas dataframe (McKinney 2010), and a 

placefile that can be displayed in Gibson Ridge 

Analyst 2 (GR2) software.  Detailed instructions 

on how to run SPORK and access saved SPORK 

output are provided on the GitHub page.   
 

In addition, a real-time version of SPORK at 

https://github.com/mwilson14/SPORK-Realtime 

automatically extracts environmental 0ºC level 

information and anticipated FFD reflectivity 

gradient direction from RAP analysis fields and 

obtains an observed storm motion for each cell 

from its included tracking algorithm, requiring 

the user to only enter the radar site of interest.  

When running on a laptop computer, the real-

time SPORK can produce placefiles for viewing 

in GR2 about a minute after a given volume scan 

is finished.  Currently, the real-time SPORK 

displays only metrics for a given volume scan, 

instead of 30-min time averages as presented in 

the results of this paper; however, future 

algorithm updates may support real-time 

generation of these averages. 
 

b.   Algorithm validation 
 

To verify that the dual-pol metrics 

objectively calculated by SPORK are reasonable 

compared to manual analyses of dual-pol 

signature characteristics, SPORK was run on the 

64 supercells examined by VDB20, and the 

objectively calculated dual-pol metrics from 

SPORK were compared to VDB20’s manually 

calculated metrics.  Scatterplots comparing 

manual and algorithm-generated ZDR column 

areas, ZDR column maximum depths, and hailfall 

areas averaged over the analysis period for each 

storm are shown in Fig. 3, and similar plots for 

all available analysis times are shown in Fig. 4.  
  

Overall, the algorithm performed well, with a 

Spearman’s correlation of r = 0.817 between 

manual and automated storm-mean ZDR column 

areas and r = 0.620 for individual scans.  

Excluding cases where a given signature was not 

detected by SPORK, the median SPORK ZDR 

column area is 18 km
2
 smaller than the median 

manual ZDR column area, which was expected 

with the change in ZDR threshold from 0.5 dB 

with the manual analyses to 1.0 dB with SPORK.  

SPORK also performed well in calculating 

hailfall areal extent, with a correlation of  

r = 0.852 between the manual and algorithm 

storm-mean calculations, and r = 0.839 for the 

individual scans.  A low bias also exists with 

SPORK-calculated hailfall areas, with the 

median SPORK hailfall area being 13 km
2
 

smaller than its manually calculated counterpart.  

Algorithm performance was lower with ZDR 

column depth values, with a correlation of 

r = 0.551 between the manual and algorithm 

storm-mean ZDR column depths and r = 0.404 for 

individual scans.  The median SPORK-

calculated column depth was also 192 m higher 

than its manual counterpart.   

 

Several explanations for the lower 

correlation between manual and algorithm-

calculated ZDR column depths emerged upon 

close examination of cases with particularly 

large (>1-km) differences between storm-mean 

manual and SPORK-calculated column depths.  

High ZDR values aloft associated with TBSSs 

missed by SPORK’s quality control were most 

often responsible for cases where SPORK’s 

column depths were substantially higher than 

manual column depths, along with the 

extension of ZDR >1 dB above what was present 

in the raw data by the interpolation involved in 

gridding the raw data for SPORK (as one of the 

reviewers of this paper noted is fairly common 

in interpolated ZDR analyses).  Cases where 

SPORK calculated substantially lower column 

depths than the manual analyses were most 

often narrow, tilted columns where SPORK’s 

vertical continuity requirement prevented it 

from capturing the full column depth. 

 

In some instances, ZDR columns analyzed 

manually were not detected by SPORK.  Upon 

close examination of cases where a column 

deeper than 3.5 km or larger than 30 km
2
 was 

missed, several failure modes became evident.  

Firstly, deep but narrow columns occasionally 

were missed by SPORK, likely due to their small 

area.  That made the random-forest algorithm 

  

https://github.com/mwilson14/SPORK-SPIN
https://github.com/mwilson14/SPORK-Realtime
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Figure 3:  Scatterplots comparing storm-mean SPORK-calculated values of a) ZDR column area, b) ZDR 

column maximum depth and c) hailfall area, to manually calculated storm-mean values from VDB20 for 

each metric.  Spearman’s rank-order correlation coefficients are included on each plot, as well as the 

number of storms included in each comparison. 
 

 
 

Figure 4:  As in Fig. 3, but for all individual volume scans for each signature.  On each panel, n indicates 

the number of volume scans included in each comparison. 
 

less likely to classify them correctly as a column 

object.  Secondly, columns were occasionally 

missed because they were assigned to a spurious 

storm object from the tracking algorithm that 

was closer to the column than the actual 

supercell.  Finally, in a few cases, very large, 

elongated supercells resulted in missed column 

objects because the ZDR column was so far away 

from the storm centroid that they were not 

properly assigned to that storm object. 

 

Sample sizes for each of these metrics differ 

in the verification dataset, since not all metrics 

were calculated for each storm at every analysis 

time by VDB20.  In addition, verification of 

SPORK’s ZDR arc and KDP–ZDR separation 

metrics is not performed here, since those 

metrics calculated using the same methodology 

have already been extensively compared to 

manually calculated values by WV21, and 

because manual KDP–ZDR separation metrics 

were not calculated for the supercells included in 

VDB20’s analysis. 
 

c.   Supercell case selection 
 

A dataset of 206 supercells was compiled to 

evaluate whether SPORK can capture the 

differences in dual-pol signatures between 

tornadic and nontornadic supercells observed by 

VDB20, Loeffler et al. (2020),  Homeyer et al. 

(2020), and French and Kingfield (2021), and to 

provide a sample of storms to evaluate 
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Table 2:  Spearman’s rank-order correlations between environmental parameters obtained from proximity 

RAP soundings and storm-mean dual-pol metrics from SPORK.  Correlations with a single star have  

p <0.05, and correlations with two stars have p <0.01.  SRH is calculated with both Bunkers et al. (2000) 

and observed storm motions, the latter marked with an (obs) in the variable name.  Correlations ≥0.30 are 

bolded.  “Shear” represents vector magnitudes of wind differences. 
 

 
relationships between different dual-pol metrics 

and near-storm environmental parameters.  This 

dataset was split evenly between 103 tornadic 

and 103 nontornadic supercells during 2012–

2020, to ensure that each case had dual-pol data. 

To create this dataset, an initial collection of 

supercells was gathered from the VDB16, 

VDB17, VDB20, and WV21 databases.  

Additional cases were gathered by searching for 

linear segments of storm reports on the Storm 

Prediction Center archived maps of preliminary 

storm reports from the years in question 

(https://www.spc.noaa.gov/climo/reports/), and 

examining convective morphology using the 

radar composites on the UCAR Radar Archive 

(http://www2.mmm.ucar.edu/imagearchive/).  

Cases that appeared to contain one or more 

supercells were examined more closely in GR2 

using NEXRAD Level II data downloaded from 

Amazon Web Services (available at 

https://aws.amazon.com/public-datasets/nexrad/). 

To be included in the dataset, a storm had to:  1) 

consistently display typical supercell reflectivity 

structures such as hook or pendant echoes or a 

bounded weak echo region (BWER), and dual-

polarization supercell signatures such as ZDR 

arcs, and 2) maintain a midlevel mesocyclone for 

≥30 min.  Each storm was also required to have 

at least four full volume scans where most of the 

forward-flank region was sampled at ≤1 km 

ARL, to ensure adequate sampling of the shallow 

size sorting in the ZDR arc.  All 206 of these 

Variable 
ZDR Column 

Area 
ZDR Column 
Max Depth 

ZDR Column 
Mean Depth 

Hail Area 
Separation 

Angle 

MLCAPE 0.35** 0.52** 0.52** –0.09 –0.04 

MUCAPE 0.32** 0.50** 0.49** –0.10 –0.06 

0–6-km Shear 0.06 –0.12 –0.19** 0.00 0.11* 

0–3-km Shear 0.11 –0.04 –0.07 –0.12 0.22** 

0–1-km Shear 0.18* –0.04 –0.02 –0.34** 0.45** 

Effective Shear 0.18* 0.00 –0.06 –0.05 0.08 

Sfc–3-km SRH 0.17* 0.01 –0.04 –0.20** 0.31** 

Sfc–1-km SRH 0.24** 0.04 0.01 –0.35** 0.41** 

Effective SRH 0.27** 0.15* 0.09 –0.28** 0.33** 

Sfc–3-km SRH (obs.) 0.20** 0.00 –0.03 –0.26** 0.33** 

Sfc–1-km SRH (obs.) 0.19* 0.04 –0.05 –0.12 0.22** 

Effective SRH (obs.) 0.30** 0.19** 0.10 –0.22** 0.25** 

LCL Height –0.13 0.13 –0.02 0.27** –0.32** 

LFC Height –0.22** –0.13 –0.25** 0.28** –0.31** 

EL Height 0.31** 0.41** 0.44** –0.27** –0.01 

0ºC Height 0.37** 0.35** 0.41** –0.41** –0.01 

1–3-km RH 0.07 –0.09 0.02 –0.17* 0.13 

3–6-km RH –0.11 –0.18* –0.07 –0.08 0.12 

6–9-km RH –0.14* –0.24** –0.14* –0.12 0.19** 

CIN 0.16* 0.10 0.21** –0.21** 0.17* 

SCP 0.42** 0.44** 0.37** –0.30** 0.24** 

STP 0.42** 0.35** 0.34** –0.44** 0.35** 

0–3-km CAPE 0.17* 0.14 0.25** –0.20** 0.29** 

0–1-km SR Wind 0.09 0.04 –0.15* 0.20** –0.26** 

0–2-km SR Wind 0.06 0.05 –0.12 0.26** –0.35** 

0–3-km SR Wind 0.05 0.03 –0.11 0.25** –0.37** 

2–4-km SR Wind 0.10 0.06 0.03 0.13 –0.10 

0–6-km SR Wind 0.12 0.06 –0.05 0.19** –0.31** 

6–9-km SR Wind –0.04 –0.07 –0.17* 0.17* –0.07 

https://www.spc.noaa.gov/climo/reports/
http://www2.mmm.ucar.edu/imagearchive/
https://aws.amazon.com/public-datasets/nexrad/
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supercells are used in the analysis comparing 

dual-pol signatures in different environments 

presented in section 3b. 
 

The analysis presented in section 3a 

comparing pretornadic and nontornadic 

supercells uses a slightly smaller dataset. 

Following the methodology of VDB20, the 

pretornadic dataset included only storms where 

the 30-min period prior to the storm’s first 

tornado could be analyzed to remove possible 

effects from cyclic tornadogenesis.  At least 

three radar scans where the low-level 

mesocyclone and most of the forward flank  

were sampled at ≤1 km ARL, in the 30 min 

leading up to tornadogenesis, also were required, 

to enable analysis of pretornadic dual-pol 

metrics.  Tornadogenesis times were taken from 

NCEI’s Storm Event Database 

(https://www.ncdc.noaa.gov/stormevents/).  This 

reduced the sample size of the pretornadic 

dataset to 95 storms from the original 103.  The 

EF-scale ratings of all tornadoes produced over a 

supercell’s life cycle also were recorded.   

 

To be included in the nontornadic supercell 

dataset, a supercell had to not be associated with 

any tornado reports during its entire life cycle as 

determined by matching NCEI storm reports to 

the supercell’s location in GR2.  For consistency, 

nontornadic storms were analyzed over a 30-min 

period prior to peak low-level rotation [defined 

as the peak value of the Normalized Rotation 

(nrot) parameter in GR2 associated with a valid 

low-level circulation on the 0.5º tilt], and also 

were required to have at least three radar scans 

with most of the forward flank sampled at ≤1 km 

ARL, leading up to and including the time of 

peak low-level rotation.  Storms for which a peak 

nrot value could not be defined—either due to 

the absence of a low-level circulation or data 

quality issues such as vertical sidelobe 

contamination—were discarded, resulting in a 

nontornadic dataset of 77 storms. 

 

Environmental data also were gathered for 

each supercell, using proximity soundings from 

the National Center for Environmental 

Information (NCEI) archive of Rapid Refresh 

(RAP) model analyses.  RAP soundings were 

obtained for each supercell case from the RAP 

archive THREDDS server maintained by NCEI 

(https://www.ncei.noaa.gov/thredds/catalog/rap1

30anl/).  Each sounding was required to be 

within 80 km of the supercell, and had to be 

located on the same side of any mesoscale 

boundaries as the storm in question, and away 

from the outflow of other storms.  Such 

positioning was considered representative of the 

supercell’s inflow airmass.  For cases that span 

multiple hours and have multiple possible 

proximity soundings, the sounding closest to the 

middle of the analysis period was used for that 

storm, when possible.  Multiple thermodynamic 

and kinematic variables and derived parameters 

were calculated for all soundings using the 

Sounding/Hodograph Analysis and Research 

Program in Python (SHARPpy, Blumberg et al. 

2017) and Meteorological Python (MetPy, May 

et al. 2017) packages.  A list of these parameters 

is available in Table 2. 

 

3.  Results and discussion 

 

a.  Pretornadic-nontornadic supercell 

comparison 

 

To compare the values of dual-pol metrics 

calculated by SPORK in pretornadic and 

nontornadic supercells, SPORK was run for all 77 

nontornadic and 95 pretornadic supercell cases 

from the filtered dataset described above.  For the 

tornadic supercells, mean values over all scans 

within the 30-min pretornadic window for each 

storm are calculated for ZDR column area, mean 

depth and maximum depth, hailfall areal extent, 

and KDP–ZDR separation distance and angle.  For 

nontornadic supercells, average values were 

calculated over the 30 min prior to peak low-level 

rotation (specifically, the peak nrot value 

associated with a valid low-level couplet in GR2.)  

In the comparisons in the following section, all 

values discussed are mean values for the 30-min 

analysis period for each storm.  The statistical 

significance of any resulting differences was 

assessed using a Wilcoxon-Mann-Whitney test 

following the methods of VDB16, with 

significance defined as p <0.05.   

 

Time steps where a given signature was not 

detected by SPORK presented a problem for this 

analysis.  This is because the absence of a 

signature could be interpreted differently for 

different signatures, with a missing ZDR arc 

reasonably assumed to represent a ZDR arc area  

of 0 km
2
, while a missing KDP–ZDR separation 

vector does not correspond to a 0° separation

 

https://www.ncdc.noaa.gov/stormevents/
https://www.ncei.noaa.gov/thredds/catalog/rap130anl/
https://www.ncei.noaa.gov/thredds/catalog/rap130anl/
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Table 3:  Mean values for SPORK metrics for pretornadic and nontornadic supercells.  Wilcoxon-Mann-

Whitney (WMW) p-values are also listed for comparisons of the pretornadic and nontornadic datasets. 
 

 

angle.  Thus, for all signatures besides the KDP–

ZDR separation, the comparisons of the SPORK 

metrics were performed twice: once with all 

metrics for a given signature set to 0 at times 

when that signature was not detected, and once 

with those times not included in the analysis for 

that signature.  For all metrics besides hailfall 

area, these two analyses did not differ 

substantially.  Thus, both analyses are presented 

for the hailfall areal extent analysis, and 

comparisons for all other signatures exclude 

radar scans when that signature was not present.   

 

To examine whether storms producing 

significant tornadoes have meaningfully different 

dual-pol signatures than those producing less-

damaging (i.e., “weaker”, EF0–EF1) tornadoes, 

this analysis was repeated with the tornadic 

supercell category split into two subsets.  A 

“weak tornado” subset consisted of storms where 

the tornado produced immediately after the 

analyzed pretornadic period was rated EF0–EF1. 

A significantly tornadic subset contained storms 

with the tornado rated EF2 or higher. Finally, 

analyses also were run using 15-min and 10-min 

analysis periods, as well as all individual scans 

from these analysis periods, instead of temporal 

averages.  Since the results did not differ 

substantially between these analyses, only those 

using 30-min storm means are presented below, 

beginning with the ZDR column metrics. 

Summary statistics from the pretornadic-

nontornadic comparisons are listed in Table 3. 

 

     ZDR column area and depth can be thought of 

as a proxy for the size and strength of a 

supercell’s updraft, and recent work (Coffer and 

Parker 2017; Sessa and Trapp 2020) has found 

that tornadic supercells (and in particular those 

producing strong tornadoes) tend to have larger, 

steadier mesocyclones.  As such, we expect 

pretornadic supercells to have larger and deeper 

ZDR columns than nontornadic supercells.   

Furthermore, we expect significantly tornadic 

supercells to have larger and deeper ZDR columns 

than weakly tornadic supercells, assuming that 

the former have larger, stronger updrafts.  Our 

analysis supports this expectation, because 

pretornadic supercells had notably larger ZDR 

column areas than did nontornadic supercells. In 

our dataset, tornadic supercells have a mean ZDR 

column area of 39 km
2
, while nontornadic 

supercells have mean ZDR column area of 27 km
2
 

(Table 3).  Although substantial overlap does 

exist between the pretornadic and nontornadic 

ZDR column area distributions (Fig. 5), the 

difference between pretornadic and nontornadic 

mean ZDR column areas is statistically significant 

(Table 3).  Three-quarters of the nontornadic 

supercells in our analysis have ZDR column areas 

<38 km
2
, while half of the tornadic supercells 

have ZDR column areas >36 km
2
.  That suggests 

that this metric may be useful to warning 

forecasters in determining which supercells may 

be most likely to become tornadic. Splitting the 

tornadic storms into significant and weak 

tornadoes (Fig. 5b) did not reveal statistically 

significant differences between them.  These 

results are similar to those found by VDB20 and 

French and Kingfield (2021); however, the 

nontornadic subset examined herein has notably 

larger ZDR column areas than their nontornadic 

subset, leading to greater overlap in the 

pretornadic and nontornadic ZDR column areas.  

This could be due to:  1) the larger nontornadic 

sample used in this analysis [n = 73 compared to 

their n = 30], 2) the possibility that the 

nontornadic storms chosen for this paper were 

systematically stronger than those examined by 

French and Kingfield (2021), or 3) the possibility 

that SPORK may systematically calculate larger 

areas in weak ZDR columns than their algorithm.  

Regardless, their guidance for using ZDR column 

area in the warning decision process (namely, 

that a supercell with a ZDR column area >40 km
2
 

has a greater chance of producing a tornado soon 

SPORK Metric Pretor Nontor Pretor-Nontor p-value 

Column Area (km
2
) 38.87 27.02 1.77 x 10

–3 

Column Mean Depth (km) 1.69 1.57 0.01 

Column Max Depth (km) 3.27 3.08 0.14 

Hailfall Area (km
2
) 17.42 28.32 0.02 

Hailfall area (w/zeros, km
2
) 0.00 6.17 3.87 x 10

–4 

Separation Angle (°) 69.09 38.42 3.97 x 10
–7 
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compared to a supercell with a ZDR column area 

<40 km
2
) works with our dataset as well.  The 

vast majority (71 %) of column areas >40 km
2
 in 

our dataset occurred with pretornadic supercells.  

However, almost half (47%) of storms with 

column areas <40 km
2
 in our dataset produced 

tornadoes, so a column area <40 km
2 

does not 

necessarily mean a storm will be nontornadic. 
  

Figure 5: Violin plots comparing a) pretornadic and nontornadic ZDR column areas obtained from SPORK  

and b) nontornadic column areas to pretornadic areas from storms that produce weak or significant 

tornadoes.  Gold text indicates the 25th, 50th, and 75th percentile values for each sample.  Whiskers extend 

to the 5th and 95th percentiles, and outliers are plotted as gold circles. 
 

 

Figure 6:  As in Fig. 5, but for ZDR column mean depth. 
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Figure 7:  As in Fig. 5, but for ZDR column maximum depth. 

 

ZDR column-depth metrics were not found to 

be usefully different between pretornadic and 

nontornadic supercells, as shown in Table 3 and 

Figs. 6 and 7.  The mean value of maximum ZDR 

column depth was 3.27 km for pretornadic 

supercells and 3.08 km for nontornadic 

supercells, and the mean value of mean ZDR 

column depth was 1.69 km for tornadic storms 

and 1.57 km for nontornadic storms (Table 3), 

and the distributions of both metrics for 

pretornadic and nontornadic supercells almost 

entirely overlap (Figs. 6 and 7).  Although the 

difference between pretornadic and nontornadic 

ZDR column mean depths was significant  

(p = 0.01), the two distributions have substantial 

overlap.  The magnitude of the difference (120 

m), compared to the typical vertical beam spacing 

with which supercell updrafts are usually sampled 

by WSR-88Ds and the 250-m vertical resolution 

of the objective analyses used by SPORK, is quite 

small.  Thus, this difference is likely not 

operationally useful. These results concur with 

Kuster et al. (2019), who found no significant 

differences between ZDR column depths of the 

tornadic and nontornadic mesocyclones.  Our 

results also concur with VDB20, who also found 

that ZDR column depth did not exhibit a 

statistically significant difference between 

pretornadic and nontornadic supercells.  Finally, 

as with ZDR column area, significantly tornadic 

supercells did not display a notable, statistically 

significant increase in column depth compared to 

weakly tornadic storms (Figs. 6b, 7b). 
 

Work by VDB20 found that hailfall areal 

extent was larger in nontornadic supercells than in 

pretornadic supercells. SPORK displayed similar 

differences in hailfall areal extent between 

pretornadic and nontornadic supercells to those 

found by VDB20.  However, these differences 

were most apparent when timestamps of an 

undetected hailfall signature were considered to 

have a hailfall area of 0 km
2
, instead of being 

excluded from the analysis (Table 3, Figs. 8 and 

9).  This is because a substantial fraction of radar 

scans in pretornadic supercells did not display a 

detectable hailfall signature, with 54 % of 

pretornadic storms displaying no SPORK-

detected hailfall signature compared to 28 % of 

nontornadic storms.  When these scans are 

excluded, pretornadic supercells have a mean 

hailfall area of 17 km
2
 compared to 28 km

2
 in 

nontornadic supercells, and the pretornadic and 

nontornadic hailfall area distributions share a fair 

amount of overlap (Fig. 8).  When these scans are 

included, the difference between the pretornadic 

and nontornadic hailfall area distributions 

becomes even more apparent (Fig. 9).   
 

SPORK-detected hailfall signatures are even 

more uncommon in pretornadic storms that go 

on to produce significant tornadoes than in 
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Figure 8:  As in Fig. 5, but for hailfall extent excluding scans with no detected hailfall.  

 

 

 
 

Figure 9:  As in Fig. 5, but for hailfall extent calculated including hailfall areal extents of 0 km
2
. 
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Figure 10: As in Fig. 5, but for separation angle. 

 

pretornadic storms overall, with 64 % of such 

storms having no detectable hailfall signature 

compared to 49 % of storms producing weak 

tornadoes.  Nontornadic supercells may be more 

likely to have bigger hailfall areas because the 

same relatively dry low-level environments with 

high LCLs that are favorable for delayed melting 

of hail (Rasmussen and Pruppacher 1982) also 

support excessively cold, dense outflow.  Such 

outflow could impede the stretching of near-

surface vorticity to tornado strength by the low-

level updraft (Markowski et al. 2002).  

Furthermore, the tendency for nontornadic 

storms to have polarimetrically inferred hailfall 

signatures noted here is similar to Kumjian and 

Ryzhkov (2008), who found that 48 % of volume 

scans in their 9-storm tornadic sample had no 

dual-pol hail signature, compared to 15 % of the 

volume scans in their 6-storm nontornadic sample. 
 

Loeffler et al. (2020) and Loeffler and 

Kumjian (2018) found that KDP–ZDR separation 

angles tend to be larger and closer to 

perpendicular to storm motion in tornadic than 

nontornadic storms.  Separation angles closer to 

perpendicular hypothetically are associated with 

tornadic storms, because they may indicate larger 

values of storm-relative helicity in a given 

storm’s inflow (Loeffler and Kumjian 2018).  

Separation angles also  may be smaller in 

nontornadic storms because the KDP foot is 

located farther to the rear of the precipitation 

shield and closer to the updraft, which allows 

colder outflow air to advect under the low-level 

mesocyclone and impede tornadogenesis 

(Loeffler et al. 2020).  The automated separation 

angles calculated by SPORK show similar, 

statistically significant differences between 

pretornadic and nontornadic supercells as found 

by Loeffler et al. (2020); pretornadic storms have 

a mean separation angle of 69°, compared to 38° 

for nontornadic supercells (Table 3, Fig. 10).  

Moreover, three-quarters of pretornadic 

supercells had separation angles >40°, while 

over half of nontornadic supercells had 

separation angles smaller than 40° (Fig. 10).  As 

with ZDR column-area and depth metrics, 

pretornadic storms that produced significant 

tornadoes did not have meaningfully larger 

separation angles than weakly tornadic storms 

(Fig. 10b) 
 

     These results differ from those of Van Den 

Broeke (2021), who found that separation angles 

in pretornadic supercells and in nontornadic 

supercells with a strong low-level mesocyclone 

were fairly similar.  However, the average 

separation angles found by Van Den Broeke 

(2021) were large for both pretornadic and 

tornadogenesis failure cases (78.4° for tornadic 

storms and 79.4° for the nontornadic cases), 

which might be expected since all of the storms 

examined developed a strong low-level 

mesocyclone.  Limiting the nontornadic storms 
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in this dataset to only the 24 storms that meet the 

nrot >1 criterion from Van Den Broeke (2021) 

still results in a notable difference between 

separation angles in this sample (36°/40° 

mean/median) and the pretornadic mean 

separation angle of 69°.  Thus, more work is 

likely needed comparing separation angles in a 

large sample of nontornadic supercells that 

develop strong low-level rotation to tornadic 

supercells.  This could determine if the 

separation angle is used best as simply a 

diagnostic indicator of a storm-scale 

environment favorable for strong low-level 

mesocyclones, or if the signature can provide 

more information about a given storm’s 

likelihood of producing a tornado, given that  it 

produces a strong low-level mesocyclone. 

 

b.  Correlations between dual-pol metrics and 

environmental variables 
 

To examine how each of the dual-pol 

signatures explored in this study is affected by 

environmental parameters, Spearman’s rank-order 

correlations were calculated for each of the dual-

pol metrics, and for all of the environmental 

variables calculated from each storm’s RAP 

proximity sounding.  For a consistent analysis 

across all cases, and to ensure the dual-pol metrics 

calculated represented the environment shown by 

the proximity sounding for each storm, all dual-

pol metrics in this analysis were calculated as 

storm means for all available scans within the 

hour centered on the sounding time.  To be 

included in this analysis, a storm metric was 

required to have at least 3 valid SPORK values 

within the hour-long analysis window. The results 

of these calculations are displayed in Table 2, and 

some of the more notable correlations and 

possible physical explanations are noted in the 

following discussion. 
 

ZDR column area had moderate positive 

correlations with MLCAPE (r = 0.35) and 

MUCAPE (r = 0.32), as well as the 

environmental 0ºC level (r = 0.37).  Weaker but 

still statistically significant positive correlations 

existed with effective bulk shear vector 

magnitudes (r = 0.18), SRH calculated using 

several combinations of depths and storm 

motions (r = 0.17 to 0.30), and EL height 

(r = 0.31).  A weak negative correlation was also 

found with LFC height (r = –0.22). The 

moderate correlations between ZDR column area 

and CAPE agree with modeling work showing 

that supercell updrafts are larger in environments 

with more CAPE (Lin and Kumjian 2022).  

Furthermore, the supercell composite parameter 

[SCP, Thompson et al. (2003)] and significant 

tornado parameter [STP, Thompson et al. (2003, 

2012)] both had larger correlations with ZDR 

column area than any individual parameter 

(r = 0.42 for both), likely reflecting the mutually 

reinforcing influence of both CAPE and SRH in 

the calculations of these metrics.   

  

Although ZDR column area was found to have 

a weak positive correlation with SRH, this was 

likely not due to stronger storm-relative flow 

leading to larger updrafts, as in Peters et al. 

(2020), and thus larger ZDR columns.  This is 

because ZDR column area and storm-relative flow 

had no statistically significant correlation over 

any layer in this analysis.  The contrast with the 

findings of Peters et al. (2020) raises the 

possibility that ZDR column areas may not 

correlate well with updraft width, or that the 

updraft speed contour that might be 

approximated by the ZDR column is different 

from that used in their analysis.  Future work 

should compare a large sample of ZDR columns 

to other available updraft size proxies (such as 

overshooting top areas) to test ZDR column-area 

correlations with updraft areas, especially in 

cases where large amounts of hail may mask the 

ZDR column signature partially. 
 

ZDR column mean and maximum depths were 

both most strongly correlated with MLCAPE 

(r = 0.52/0.52, mean depth/maximum depth, 

respectively) and MUCAPE (r = 0.49/0.50).  

Both also displayed moderate positive 

correlations with the environmental 0ºC level 

(r = 0.41/0.35) and equilibrium level (EL) 

heights (r = 0.44/0.41).  Outside of a weak 

positive correlation between maximum column 

depth and effective SRH (r = 0.15/0.19 using 

Bunkers et al. (2000)/observed storm motions) 

and a weak negative correlation between 

surface–6-km bulk shear vector magnitudes and 

mean column depth (r = –0.19), column-depth 

metrics generally displayed little or no 

correlation with shear and SRH metrics.  As with 

column area, both column-depth metrics 

displayed modest positive correlation with SCP 

(r = 0.37/0.44) and STP (r = 0.34/0.35). 

However, these correlations were both smaller 

than the correlations between column depth and 

CAPE, possibly due to the lack of a correlation 

between column depth and SRH, as was present 

for column area.  Overall, these results indicate 

that ZDR column depth in supercells is influenced 
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strongest by environmental thermodynamics, 

including CAPE, the environmental 0ºC level, and 

EL height. 

 

The individual variable with the strongest 

influence on hailfall area was the environmental 

0ºC level, with a moderate negative correlation 

(r = –0.41).  Weak to moderate negative 

correlations also were noted between hailfall area 

and SRH calculated over several different layer 

and storm motion combinations (r = –0.20 to –

0.35), as well as with CIN (r = –0.21), SCP (r = –

0.30), STP (r = –0.44), 0–3-km CAPE (r = –0.20), 

and EL height (r = –0.27).  Weak to moderate 

positive correlations, meanwhile, were noted for 

several layers of low-level storm-relative flow 

below 3 km (r = 0.20 to 0.26) as well as LFC 

(r = 0.28) and LCL heights (r = 0.27).  Taken 

together, these correlations indicate a moderate 

tendency for supercells with large hailfall areas to 

occur in environments less favorable for 

tornadogenesis, with higher LFC and LCL 

heights, weaker low-level shear vectors and SRH, 

and less 0–3-km CAPE.  Indeed, examining a 

scatterplot of hailfall area and STP shows that 

hailfall areas of 25 km
2
 or larger are very 

uncommon in environments of STP ≥2 (Fig. 11a).  

These results also concur with modeling work by 

Kumjian et al. (2021) and Lin and Kumjian 

(2022), where less curved hodographs with lower 

SRH were more favorable for the production of 

large amounts of hail, and that hail production did 

not scale monotonically with the amount of 

environmental SBCAPE. 

 

 
 

Figure 11:  Scatterplots of a) hailfall area and the significant tornado parameter, b) KDP–ZDR separation 

angle and surface–1-km SRH and c) KDP–ZDR separation angle and surface–1-km shear vector magnitude. 
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Separation angle displayed a moderate 

positive correlation with surface–1-km shear 

vector magnitude (r = 0.45) and a weak 

correlation with surface–3-km shear vector 

magnitude (r = 0.22), as well as weak to 

moderate correlations with all SRH metrics 

examined (r = 0.22 to 0.41) and with 0–3-km 

CAPE (r = 0.29).  Scatterplots of separation 

angle and surface–1-km SRH (Fig. 11b) and 

surface–1-km shear vector magnitude (Fig. 11c) 

show that separation angles smaller than 50° 

tend to be uncommon with surface–1-km SRH 

>300 m
2
 s

–2
 or surface–1-km shear vectors are 

>30 kt (15 m s
–1

), and that separation angles 

smaller than 0° tend to be uncommon with 

surface–1-km SRH >200 m
2
 s

–2
 or surface–1-km 

shear vectors >20 kt (10 m s
–1

).  Weak to 

moderate negative correlations also were 

observed between separation angle and LFC 

(r = –0.31) and LCL heights (r = –0.32), as well 

as with all storm-relative wind metrics for which 

the layer started at the surface (r = –0.26 to  

–0.37).  Likely due to the influence of the low-

level shear and SRH terms, separation angle also 

showed weak to moderate positive correlations 

with SCP (r = 0.24) and STP (r = 0.35).   

 

The moderate positive correlations between 

low-level SRH and separation angle are 

generally consistent with the results of Loeffler 

and Kumjian (2018, 2020) and Loeffler et al. 

(2020), which indicated that the KDP–ZDR 

separation angle should be more perpendicular to 

storm motion in higher-SRH environments.  

Furthermore, the correlations between more 

favorable 0–3-km CAPE, LCL height, and LFC 

height values for tornadic supercells and larger 

separation angles makes sense in light of: 1) 

Loeffler and Kumjian (2020)’s showing that 

separation angles tend to be larger in tornadic 

storms, and 2) findings presented earlier in this 

paper that SPORK-calculated separation angles 

tend to be larger in pretornadic supercells in the 

30 min prior to tornadogenesis than in 

nontornadic supercells.  While Loeffler and 

Kumjian (2020) convincingly demonstrate the 

physical link between changes in size-sorting 

behavior and larger separation angles in higher-

SRH environments, theoretical explanations of the 

observed correlations between 0–3-km CAPE, 

LCL height, LFC height, and the separation angle 

have yet to be explored.  Thus, the correlations 

between these variables and the separation angle 

may simply be a function of these variables and 

the separation angle both being larger in tornadic 

supercell environments, rather than a physical 

connection between larger values of these 

parameters and larger separation angles.  

 

4.  Summary and conclusions 
 

In this study, we have built on the work of 

WV21 to introduce the Supercell Polarimetric 

Observation Research Kit (SPORK), an 

automated Python algorithm capable of 

identifying and quantifying supercell dual-pol 

signature metrics, including ZDR column area 

and depth, hailfall area, and the KDP–ZDR 

separation angle.  We evaluated the dual-pol 

signature metrics produced by SPORK by 

comparing them to manual calculations from 

VDB20.  Then we ran the algorithm on a 

sample of 206 supercells to determine whether 

automatically calculated dual-pol metrics from 

SPORK displayed the same differences between 

tornadic and nontornadic storms found in 

VDB20 and Loeffler et al. (2020). We also 

examined how each dual-pol metric was related 

to various environmental parameters derived 

from RAP proximity soundings for each storm.  

Our main findings are summarized below: 
 

 SPORK’s calculations for ZDR column area 

and hailfall area matched manual 

calculations from VDB20 well (r = 0.620 to 

0.852); however, correlations between 

manually calculated ZDR column depth 

metrics and values from SPORK were less 

strong (r = 0.404 to 0.551). 
 

 The differences between the dual-pol 

signatures of tornadic and nontornadic 

supercells found by VDB20, Loeffler et al. 

(2020), Homeyer et al. (2020) and French 

and Kingfield (2021) also showed up in 

SPORK’s automated analysis of a larger 

sample of storms.  Pretornadic supercells 

had larger ZDR column areas, smaller 

hailfall areas, and larger separation angles 

than nontornadic storms.  Some of these 

differences, particularly those involving 

column area and separation angle, may be 

large enough to be operationally useful. 
 

 Storm-mean dual-pol metrics from SPORK 

mainly displayed moderate to weak 

correlations with various environmental 

parameters.  Notably, ZDR columns were 

larger and deeper in more unstable 

environments (r = 0.32 to 0.53), and slightly 

larger in environments with higher SRH 

(r = 0.17 to 0.30).  Hailfall area was larger 
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in environments with lower environmental 

0ºC levels (r = –0.41), lower SRH (r = –0.20 

to –0.35), and higher LCLs and LFCs 

(r = 0.27 to 0.28).  Separation angles were 

larger in environments with stronger low-

level shear vectors (r = 0.45) and SRH 

(r = 0.22 to 0.41), as well as lower LCLs 

and LFCs (r = –0.31 to –0.32).  

Accordingly, ZDR columns and separation 

angles were larger in environments with 

higher STP (r = 0.42 and 0.35), while 

hailfall area was smaller (r = –0.44).  These 

tendencies may be useful to forecasters, 

since they may indicate that a storm with a 

larger ZDR column, smaller hailfall area, 

and larger separation angle is in an 

environment more favorable for 

tornadogenesis than vice versa.  These 

results could be especially useful in cases 

with multiple proximal supercells, as 

differences in dual-pol signatures may 

indicate that one storm is experiencing a 

more favorable storm-scale environment 

for a tornado in the near term than its 

neighbors, and that may not be otherwise 

resolved in operationally available data. 

 

The work presented here represents a first 

step toward expanding the WV21 algorithm 

into automatically quantifying multiple dual-pol 

metrics in supercells.  SPORK shows promise 

in quickly identifying and quantifying supercell 

dual-pol signatures with similar results to 

VDB20, and SPORK-identified dual-pol 

metrics display similar differences between 

tornadic and nontornadic supercells as found 

using smaller samples and less-automated 

analyses by VDB20 and Loeffler et al. (2020).  

Still, the results presented here come with some 

caveats that will be addressed in future work.  

Namely, since SPORK is designed for right-

moving supercells, it may miss or misclassify 

dual-pol signatures in nonsupercell storms or 

left-moving supercells.  Additionally, the 

potential covariances between some of the 

environmental parameters examined in section 

3b complicate the drawing of connections 

between individual environmental parameters 

and dual-pol signature characteristics.   

 

Future studies using SPORK should examine 

much larger supercell samples for fuller 

relationships between supercell dual-pol 

signatures and storm environments.  Larger 

samples of more intense tornadoes also would 

provide a better understanding of how dual-

polarization signatures vary with tornado rating 

than can be gleaned from the relatively small 

sample here.  They should also compare dual-

pol signatures of large samples of nearby 

tornadic and nontornadic storms to see if any 

useful dual-pol differences exist between them 

on the same day.  Furthermore, the use of dual-

pol metrics from SPORK, or similar algorithms 

as predictors in machine-learning algorithms to 

produce probabilistic short-term forecasts of 

convective hazards (such as ProbSevere 

(Cintineo et al. 2020)), should be explored.  
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REVIEWER COMMENTS 

 

[Authors’ responses in blue italics.] 

 

REVIEWER A (Charles M. Kuster): 

 

Initial Review: 

 

Recommendation:  Accept with major revisions. 

 

General Comments:  The authors present information about an automated method to quantify several 

important supercell dual-pol signatures.  The method is validated using past manual analyses and then used 

on a relatively large sample of supercells to examine differences in dual-pol signatures between tornadic 

and nontornadic supercells.  Relationships between environmental conditions and dual-pol signatures are 

also examined.  Overall, the paper is interesting, generally well written, and results are important and 

relevant for the research and operational community.  Figures and tables are also generally very well done.  

I have several substantive (major) comments regarding consistent wording, terminology, and additional 

data analysis as well as many technical (minor) comments, so I recommend the paper be accepted after 

major revisions.  Nice work! 

First, thanks for your insightful review of our paper!  We’ve made almost all of the changes you suggested.  

We’d also like to note that we discovered and fixed a bug in our code which was making SPORK’s area 

calculations too large across the board.  After fixing this bug and retraining the random-forest algorithm to 

use to new area calculations, our results comparing pretornadic and nontornadic supercells and examining 

correlations between dual-pol metrics and environmental variables did not materially change (except for 

the ZDR column and hailfall areas getting smaller across the board).  However, the verification of SPORK 

metrics against the manual calculations from VDB20 did change somewhat, with a notable low bias 

appearing in the ZDR column area calculations (somewhat expected given the differing ZDR thresholds 

between VDB2020 and this work), and a smaller low bias appearing in SPORK’s hail area calculations.  

Correlations between SPORK-calculated and manually calculated metrics showed only small changes.  

We’ve added a mention of these biases in the algorithm verification section. 

 

Substantive comments:  I understand why the 30-min window prior to tornadogenesis was selected for 

tornadic supercells, but I am concerned about making direct comparisons between tornadic and nontornadic 

storms when the analysis windows are not the same.  For the nontornadic supercells, results could be biased 

downwards (e.g., lower ZDR column depth) since the full mesocyclone lifecycle analysis window likely 

includes mesocyclone development and dissipation and maybe even storm dissipation.  ZDR columns are 

more likely to be smaller and weaker during those times. Tornadic supercell results are less likely to have 

this bias since just a 30-min window prior to tornadogenesis is looked at, and that very well may not 

include mesocyclone development and dissipation. For a better comparison (i.e., more “apples to apples”), 

perhaps choosing a 30-min window prior to low-level mesocyclone maximum intensity (as measured by 

rotational velocity) would be better for the nontornadic supercells, similar to Van Den Broeke (2021).  Or 

comparisons could be made when looking at the entire lifecycle of the tornadic supercell’s mesocyclone. 

Do the results change if you apply either of these time windows?  Was ZDR column depth more likely to be 

lower near the beginning and end of the nontornadic supercell mesocyclone’s lifetime? 

These are all good points!  We’ve reworked the pretornadic/nontornadic analysis to use a 30-min window 

prior to peak low-level rotation for each nontornadic storm (except for storms where no clear low-level 

rotation exists, or where the apparent rotation is an artifact of vertical sidelobe contamination, for which a 

30-min window prior to the RAP sounding used in the environmental analysis was used).  This reduced the 

sample size for the nontornadic dataset somewhat, but did not otherwise change the results much except for 

ZDR column depth, which is no longer notably different between pretornadic and nontornadic supercells 

using the new analysis window.  The methods and results section have been rewritten with these updates.  

Applying the new window doesn’t greatly change the results, except for ZDR column depth, which is now 

nearly the same for pretornadic and nontornadic storms.  This likely indicates that column depth were 

lower for the nontornadic supercells during the beginning or end of their life cycles. 
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Similarly, this difference in time windows could make it more difficult to compare real-time algorithm 

output to the results of the paper.  A forecaster won’t be able to know magnitudes of the dual-pol metrics 

for the full life cycle of a mesocyclone until it has dissipated.  Therefore, real-time values could not be 

compared to the results for nontornadic storms in a meaningful way.  If a 30-min window were used for 

both types of supercells, at least the starting point and associated limitations would be the same. 

Addressed in the response to the comment above by going with a 30-min window for both subsets. 

This text [original p. 13] does not appear to match with the text in section 3a.  Did you mean, “As opposed 

to the previous section…”, or was the analysis in 3a actually carried out over the full analysis period for 

both tornadic and nontornadic supercells? 

I meant “as opposed to” (the wording in that sentence was not the best, my mistake).  This section has now 

been updated to use a consistent 1-h window centered on the RAP sounding used for each storm for 

consistency, and to limit the impact of changing environments on storms with long analysis periods in the 

previous iteration of the analysis comparing dual-pol metrics to environmental parameters. 

How might the real-time algorithm be used by forecasters in the context of the results in this paper?  Does 

the real-time algorithm output statistics for the past 30 min of data for all storms or is it based on each 

individual volume scan?  If it is the latter, it could be difficult for forecasters to compare the real-time 

output with the results of this paper.  If the real-time output is not intended to be used with the results of 

this paper, that should be explicitly stated somewhere, likely on p. 6.  If the algorithm is intended to be used 

with the results of this paper and it is based on individual scans, would using all of the dual-pol metric 

values from individual scans (same idea as Fig. 3 from algorithm validation) in the analysis make more 

sense here rather than 30-min or storm-averaged values?  Do the results change at all if you use values from 

individual volume scans rather than averaged values?  If the hope is for the paper to be used operationally, 

analysis methods and the associated results should be as close as possible to what a forecaster could use in 

real-time operations. 

The real-time algorithm currently displays results from each individual volume scan, since that was the 

simplest way to code it up and get it to work in real time.  We’ve experimented with running the 

comparisons using individual scans as well as 10-, 15-, and 30-min pretornadic/pre-peak-nrot averaging 

windows, and the comparisons don’t change appreciably.  Future iterations of the algorithm could be 

configured to use a 30-min (or other duration) time window, but for the proof of concept presented here we 

thought it would be good to keep it simple, especially since I’d really want to get some operational 

forecasters’ opinions on whether single scans or a given averaging window might be best, before settling 

on a final choice.  For now, we’ve added a note that the current real-time algorithm displays only the 

metrics for a given volume scan, and that future algorithm updates may allow generation of time-average 

stats in real time. 

 

It might be interesting to see how magnitudes of various environmental parameters compare to magnitudes 

of various dual-pol signatures.  For example, a scatter plot of KDP– ZDR separation angle to 0–1-km shear 

and/or ZDR column depth to MLCAPE could be added.  Knowing a rough range of the values that could be 

expected for the environment and radar could help complete the conceptual model applied during 

forecast/warning operations.  For example, what are typical CAPE values when ZDR column area is less 

than and greater than 50 km
2
 (mentioned in 3a)? 

 

We considered adding such figures, but we weren’t sure how much value they would add to the manuscript 

and we were concerned that they would end up making it too long.  Here’s a few examples of them: 
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(The red dots are tornadic storms, blue nontornadic).  To answer your question about column area and 

MLCAPE, there doesn’t appear to be a single threshold value above which column areas of a certain size 

become much more common; however, columns larger than 40 km2 are very uncommon with <1000 J kg
–1

 

of CAPE, and very small columns (<20 km
2
) appear quite uncommon above 3000 J kg

–1
 of CAPE. 

 

[Editor’s Note:  0–1-km shear scatterplot not shown, since it became part of Fig. 11 in the final paper.] 

 

Similarly, separation angles >50° are uncommon with <10 kt of surface–1-km shear, and separation 

angles <50° are uncommon when surface–1-km shear is >30 kt. 

 

 

 
 

Finally, column depths >3 km are fairly uncommon with <1000 J kg
–1

 of CAPE, and depths <3 km are 

fairly uncommon with >2000 J kg
–1

. 

 

We ended up adding a 3-panel figure with some of these correlations as Fig. 11. 
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This additional figure/analysis would be especially important if the authors believe that the analysis shows 

that dual-pol signature metrics can provide information about a storm’s near-storm environment that might 

not be captured by observations or models due to inadequate resolution.  This idea is suggested in the last 

bullet of the conclusions.  However, statements [elsewhere] make it harder to determine how the dual-pol 

signatures might be used with environmental information.  Do the environmental conditions drive 

forecaster expectations for what dual-pol signatures to anticipate (e.g., the environment is not favorable for 

tornadic supercells so I should expect to see larger hailfall areas), or do the dual-pol signatures provide 

more precise information about the storm-scale near-storm environment that might be missed by the spatial 

resolution of observations and models (e.g., there are two storms close to each other in what appears to be a 

relatively homogeneous environment but one has a large hailfall area and the other does not so perhaps in 

reality one is in a more favorable environment than the other)?  I think the latter option is more likely and is 

what the authors are suggesting as well.  If so, I recommend making this point clearer on p. 15 since this 

result would be operationally useful.  If there is a lot of uncertainty here, then just leaving this hypothesis as 

part of a bullet in the conclusion section would be appropriate. 

 

We were thinking a bit of both.  The knowledge from this paper might drive forecaster expectations of what 

kind of dual-pol signatures to expect in a given environment (i.e., expect small ZDR columns in an 

environment with low CAPE and weak SRH), and thus a storm which defies those expectations and has a 

strong ZDR column in such an environment might warrant additional scrutiny.  It could also be useful in 

cases of storm in close proximity with different dual-pol signatures.  We’ll clarify this in the text. 

 

Figuring out the best terminology with the calculated statistics can be tricky, especially when there are 

median values of averages of maximum values.  There is a fine line between being explicit enough to be 

clear and so explicit that there are a lot of terms for the reader to wade through (e.g., median average 

maximum mean value), but below are a few examples where it was not overly clear what was being 

presented.  I don’t ultimately have a great answer here other than being as clear and explicit as possible.  

Perhaps terminology could be introduced and explained at the beginning of 3a or somewhere in section 2 

and then more simplified terms (i.e., median ZDR column depth, maximum ZDR column depth, etc.) could 

be used after that introduction. 

 

We have addressed this comment (and its sub-comments below) by adding a note saying that the 

pretornadic-nontornadic analysis is conducted using 30-min time means of each signature, and then 

simplified the wording of these statistics in the locations below.  For consistency, we also have moved away 

from using median values and used means in all cases, since the take-away points don’t change with either 

statistic. 

 

This text [original p. 3] appears to differ/contrast with text near the end of section 3a and in the second 

bullet of the conclusions regarding the KDP–ZDR separation angle. Why is Van Den Broeke (2021) not 

discussed in the 3a paragraph, especially since the results of SPORK simulations suggest something 

different?  Clarification is needed here or in section 3a. 

 

A discussion of VDB21 has been added to section 3a, as well as some examination of a possible reason for 

the differing results.  Initially, we thought that the different criteria for the nontornadic sample might be the 

reason for the difference, since VDB21 required the tornadogenesis failure cases to still have a strong low-

level meso and the sample in this paper did not.  However, applying the VDB21 criteria to this paper’s 

nontornadic dataset still yielded a notable difference between the pretornadic and nontornadic separation 

angles, and we’re not quite sure why.  This could be an interesting direction for future research repeating 

VDB21’s work with a much larger sample size, or using a different criterion (for example, a false-alarm 

tornado warning) to identify tornadogenesis failure cases.  A note of this has been added to the text. 

 

I agree with the possible explanations for why there were lower correlations between automated and 

manual measurements of ZDR column depth.  I do think there is one more important one that should be 

added, though.  I have noticed a difference when measuring ZDR column depth when using interpolated and 

non-interpolated (i.e., just the raw data from each elevation angle) data.  ZDR column depth is typically a 

little lower when using non-interpolated data.  In this case, the gridded data would be interpolated and it 

appears as if the manual data would not have been interpolated.  Figures 2 and 3 show that the SPORK 
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values (interpolated) were typically just a little higher than the manual values, and I think the reason stated 

above might explain a lot of this.  With interpolation, I have seen methods frequently fill 1+ dB above the 

top of a given elevation angle, which causes a higher measured ZDR column depth. This is ok because I 

think ZDR column depth is underestimated slightly by radar, especially as range increases and gaps between 

successive elevation angles get larger. 

 

Thanks for pointing this out!  This has been added to the list of reasons why the SPORK column depths may 

be different from the manual analyses. 

 

[Minor comments omitted...] 

 

Second review: 

 

Recommendation:  Accept with minor revisions. 

 

General comment:  The authors have done a very good job addressing my comments and the article is 

now even stronger and clearer.  I now only have some minor (technical) comments.  The article is 

important to the research and operational community in that it presents information about an algorithm that 

quantifies multiple potentially useful dual-pol signatures and I recommend it be accepted pending minor 

revisions.  I commend the authors on a job well done! 

 

Thanks again for your helpful comments!  We’ve addressed them below, and we’ve also fixed a small error 

we found when making these edits—the r value on Fig. 3a should be 0.817 instead of 0.793, and this has 

been fixed on the figure and where it appears in the text.  [Editor’s note:  repeated mention of this fix is 

omitted from subsequent review responses, since it is documented here.] 

 

 

REVIEWER B (Joseph C. Picca): 

 

Initial Review: 

 

Reviewer recommendation:  Accept with major revisions. 

 

Summary:  This paper introduces a novel toolkit that automates calculation of a number of relevant dual-

pol signatures in supercells.  It then uses these calculations from a number of tornadic and nontornadic 

cases for a statistical analysis of any potential connections among these signatures, supercellular 

tornadogenesis, and the near-storm environment.  While the motivation and overall effort of the paper is 

sound and could be a worthwhile contribution to the literature, there are questionable and/or unclear 

analysis methods, and numerous inconsistencies and errors, in the paper.  My primary concern is the 

difference in analysis windows between pretornadic and nontornadic supercells, which I think introduces a 

non-negligible bias in the data. Given these data are a centerpiece, I think major revisions are necessary. 

 

First, thanks for your helpful review!  We’ve made almost all of the changes you suggested.   

 

[Editor’s note:  omitted identical description of fixed SPORK bug as in Reviewer A reply.] 

 

Substantive Comments:  Section 1—I think there could be a touch more discussion on why the separation 

angle may not be a great predictor of tornadogenesis, given it’s a diagnostic tool of one variable; 

furthermore, it’s well known that this variable (low-level SRH) isn’t a direct predictor of tornadogenesis 

because there are further processes to take us from low/mid-level meso to tornado.  I’m not saying anything 

you write here is incorrect, but rather, I think you could make clearer that it’s understood that, from a 

physical standpoint, it is likely that the connection between separation angle and tornado potential is 

unclear, rather than just citing statistical analyses questioning the connection. 

 

This is a good point, especially in context with the results from VDB21.  We’ve updated this section to 

suggest that the separation angle is best used as a diagnostic tool that a storm is in a favorable storm-scale 
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environment for the production of strong low-level mesocyclones, and that tornadogenesis failure may still 

occur even if the storm does develop a strong low-level meso. 

 

Section 2a—While I don’t necessarily disagree with some of the thresholds chosen, I think a little more 

justification could be given. For example, what’s the purpose behind changing the ZDR column threshold 

from 0.5 dB to 1 dB?  Similarly, is the 1-dB hailfall threshold based in another study?  Obviously the 

likelihood of hail is much higher at values less than 1 dB (given high Z), but if this is subjectively chosen in 

this paper, it should be stated. Additionally, the ZDR filter (Z <20 dBZ, CC <0.7) seems fine for improving 

the analysis, but the justification isn’t entirely accurate. You state “to remove regions of high ZDR 

associated with NBF… “, but NBF does not necessarily bias ZDR high or low. Rather, it leads to noisier ZDR 

due to a decrease in data quality associated with the CC reduction.  Similarly, ZDR with a TBSS can 

transition from anomalously high (directly behind the hail core) to anomalously low at longer ranges so a 

TBSS is not purely associated with high ZDR.  Therefore I think the phrasing should be changed to 

something more like “To remove regions of questionable ZDR associated with…”  I would also consider 

breaking up the paragraph, perhaps at “As a final pre-processing step…” to improve the organization.  

Finally, what are the concerns about tilted updrafts when only looking in the vertical for continuous grid 

points?  You reference them later on, but it’s probably worth a mention here. 

 

The 1-dB ZDR threshold was chosen, instead of the 0.5-dB threshold used by VDB20 for ZDR column 

identification, after initial testing showed that using a 0.5-dB threshold with the automated algorithm 

would often identify amorphous columns that extended much beyond what would subjectively be considered 

the ZDR column core, while the 1-dB threshold was much better in identifying ZDR column features that 

were more consistent with subjectively-identified ZDR columns. This has been added to the text.  The ≤1-dB 

ZDR and ≥50-dBZ Z thresholds for large hail were chosen to be broadly consistent with the thresholds used 

by VDB16 and VDB20, and text to that effect has been added to the manuscript. 

 

That’s a good point that the biases from TBSSs/NBF aren’t always positive—that has been clarified in the 

text using your suggested phrasing.  A new paragraph now starts with “As a final pre-processing step.”  A 

caveat mentioning possible limitations of the vertical continuity requirement in fast-moving or highly tilted 

supercells has also been added. 

 

Section 2a, second paragraph—I think this paragraph could hugely benefit from a figure showing the steps 

of drawing the ZDR contour, splitting into objects, and then assigning to storms.  Additionally, how are the 

remaining column objects combined into a single object and how does this impact the calculation of area, 

mean depth, and maximum depth?  Is there any limit on how separated the individual objects can be before 

being combined into a single object? I think there could be more clarity regarding the overall process here.  

 

We’ve added a figure depicting that process—thanks for the suggestion.  The remaining objects are 

combined into one object by considering all points within the boundaries of the remaining object polygons 

to be part of one object.  So, the area of the combined object is the sum of the areas of its component 

objects, the mean depth is the mean depth of all points within the component objects, and the maximum 

depth is the maximum depth of any of the component objects. 

 

Section 2b—VDB20 uses different thresholds than SPORK (e.g., 0.5 dB vs. 1 dB for ZDR columns). Is this 

an issue for validating SPORK’s ZDR column calculations against VDB20?  Additionally, in Fig 2a, while it 

appears the 0.5-dB manual calculation generally has larger column areas than the algorithm does, I see a 

few instances where the algorithm recorded a much larger area, despite a more restrictive ZDR threshold (1 

dB vs. 0.5 dB).  What’s going on here that a tighter threshold is leading to larger column areas?  In Fig 3a, 

there are of course even more instances of this phenomenon where the more restrictive threshold results in 

a considerably larger area.  Furthermore, SPORK appears to calculate larger depths than the manual 

analysis, on average (Fig 2b), yet two of your three explanations in the text (vertical continuity and Z/CC 

threshold filtering) should cause SPORK to generally bias lower than the manual analysis.  So those 

reasons don’t explain the data in Fig 2b.  Either there were issues with the prior manual analysis, or there 

are other contributing factors in the algorithm design…?  Lastly, the r values presented in the text don’t 

match the r values in Fig 3. 
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We initially considered the same 0.5-dB threshold as VDB20 for ZDR column area; however, the features 

identified with a 0.5-dB contour often extended well beyond what would be subjectively considered the ZDR 

column, as mentioned in the response to the comment on page 4/paragraph 1. Once the area calculation 

issue mentioned in the text before the reviewer responses was corrected, the algorithm’s 1-dB column 

areas did tend to be biased smaller than the manual 0.5-dB calculations, however, the correlation between 

the two datasets is still fairly good. With that issue fixed, fewer algorithm 1-dB areas are now present that 

are larger than the 0.5-dB manual areas.  In the 5 cases where the average SPORK column area was 

larger than the manual area, two had elongated SPORK-identified ZDR column objects which extended 

rearward along the storm’s RFD, and the flanking line portion of these columns may have been excluded in 

the manual analyses. The remaining three had SPORK-identified columns composed of multiple ZDR 

column objects.  Subjective analysis of these objects shows them to be reasonable, but they may have been 

excluded in the original subjective analysis. 

 

The reasons for possible errors in ZDR column depth have been split into reasons for instances where the 

SPORK column depth is greater than the manual analyses, and reasons for the (less common) instances 

where the SPORK columns are shallower than the manual columns.  One of the other reviewers pointed out 

that it’s fairly common for the 1-dB level in interpolated ZDR fields to be higher up than in the raw data, 

and we think this is likely the main reason why the SPORK ZDR columns tend to be deeper than the manual 

analyses.  R values have been updated to be correct.  Thanks for catching that—those were from a previous 

version of the analysis and apparently didn’t get updated in the text. 

 

Section 3a—If I have this straight, the comparison involves 30 min prior to first tornadogenesis for pre-

tornadic vs the entire period of supercellular characteristic (with radar coverage) for nontornadic.  This 

seems like a sizable flaw in the analysis, given we’re focused on a specific period with one group, but the 

entire period with the other group.  For example, would this not introduce a bias in that we’re looking at a 

period of time more likely for enhanced polarimetric signatures in the pretornadic cases, but smoothing 

everything out for the nontornadic cases?  I think a much more robust analysis would involve choosing the 

time of max Vrot (or some other objective marker) in the nontornadic cases and then comparing the 

preceding 30 min with the preceding 30 min in pretornadic cases.  I think either this analysis needs to be 

corrected or a strong explanation must be provided for why the current method is acceptable. 

 

This is an excellent suggestion—we’ve reworked the analysis to use a 30-min window prior to peak low-

level rotation (measured as the highest value of nrot in GR2 associated with a valid low-level circulation) 

for the nontornadic storms, except for storms where there was no clear low-level circulation or apparent 

circulations were the result of vertical sidelobe contamination, in which the analysis period was set to a 

30-min window prior to the environmental sounding used for that case.  The results are mostly the same, 

except for column depth, which is not smaller in nontornadic storms using the new analysis window. 

 

Section 3b—You state, “As in the previous section, polarimetric signature metrics for the tornadic storms 

were calculated over the full analysis period for each storm instead of the 30 minutes prior to 

tornadogenesis.”  However, according to the description in 3a, the prior section compared the prior 30 

minutes (pretornadic) with the full analysis period (nontornadic), for which I stated my concerns above, but 

here you suggest that might not be the case?  Whichever way it is, there are numerous consistency issues 

that need to be addressed. 

 

You’re right—this wording could definitely have been clearer.  In the submitted draft, the analysis 

comparing polarimetric metrics to environmental variables starting on p. 13 used dual-pol data from the 

full analysis period for each storm, whereas the pretornadic/nontornadic comparison used a 30-min 

pretornadic window for the pretornadic storms and the full analysis period for the nontornadic storms.  In 

the revised draft, the environmental analysis has been reworked to consistently use a 1-h period centered 

on the RAP sounding used for each storm, and the text has been updated to make the analysis periods used 

for the pretornadic/nontornadic comparison and the environmental analysis much clearer. 

 

When we see the correlations between separation angle and 0–3-km CAPE, LCL, LFC, etc., are we not just 

seeing that tornadic storms are more likely in environments with high 0–3-km CAPE and low LCL/LFC 

and that larger separation angles are also more likely with tornadic storms?  You somewhat allude to this in 



Wilson and Van Den Broeke  02 August 2022 

32 

the following discussion and then again in the conclusion, but I don’t see what these specific correlation 

values add besides what is already well established in literature (tornadoes are more often associated with 

higher CAPE, lower LCLs) given that there likely isn’t much (or at best it’s uncertain) physical connection 

between the separation angle and 0–3-km CAPE, LCLs, LFCs.  If there is, it needs to be 

described/supported better here. Otherwise, is it worth the discussion/inclusion?  

 

These correlations still exist to some degree when the tornadic and nontornadic datasets are analyzed 

separately. Thus, it’s not entirely clear that these correlations are just due to separation angles being 

larger in tornadic storms, which are more likely in environments with large low-level CAPE and low 

LCLs/LFCs.  We think the correlations are still worth noting, although we have strengthened the caveat 

that we don’t quite know what the physical mechanism connecting them would be. 

 

[Minor comments omitted...] 

 

Second review: 

 

Recommendation:  Accept with minor revisions. 

 

Summary:  I think the authors have performed excellent work in revising the analysis and manuscript to 

address my concerns and the concerns of the other reviewers.  Their work is an important step in further 

developing more nuanced dual-pol algorithms to assist warning forecasters, and it’s encouraging to see 

their analysis build upon previous work.  Therefore, I only have some minor comments on a few items to 

clean up, but I do not think it’s necessary (for me at least) to see the paper again before acceptance.  Nice 

work! 

 

Thanks again for your comments--they've definitely helped build this into a better manuscript!  We've made 

all the minor changes you requested except where noted. 

  

[Minor comments omitted...] 

 

 

REVIEWER C (Jeffrey C. Snyder): 

 

Initial Review: 

 

Reviewer recommendation:  Accept with minor revisions. 

 

Summary:  This paper introduces a Python-based algorithm/software package that provides a set of dual-

polarization radar signatures/quantities thought to be relevant to assessing supercell structure/evolution.  

The authors describe the algorithm, compare several of the algorithm’s outputs for sets of tornadic and 

nontornadic supercells, and examine correlations between algorithm outputs and environmental 

characteristics.  The content is appropriate for EJSSM. The paper is well written, with little in the way of 

meaningful grammar or spelling errors.  The figures are clear, though the font size of the text in Figs. 1–3 is 

a bit small (≈8 pt).  Past work is cited at an appropriate depth and breadth.  This tool has the potential to 

substantially aid the analysis of polarimetric signatures in future studies (pardon the split infinitive), and 

this paper is worthy of publication pending minor revisions. 

First, thanks for your insightful comments!  We’ve made almost all of the changes you suggested.   

 

[Editor’s note:  omitted identical description of fixed SPORK bug as in Reviewer A reply.] 

 

Substantive comments:  The authors include all data for a nontornadic supercell but only the 30 min 

preceding tornadogenesis for a tornadic/pretornadic supercell.  How long are the nontornadic supercells 

typically tracked?  The entire lifecycle?  Until they passed beyond some range from the radar?  Was there 

thought put towards using the same 30-min threshold for the nontornadic supercells as was used for the 
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tornadic/pretornadic supercells?  Admittedly, it’s hard to know which 30-min chunk of time to use, but one 

option would be to consider the time of strongest rotation (perhaps using something like AzShear), similar 

to what was done in Tuftedal et al. (2021). 

Tuftedal, K. S., M. M. French, D. M. Kingfield, and J. C. Snyder, 2021: Observed bulk hook echo drop size 

distribution evolution in supercell tornadogenesis and tornadogenesis failure. Mon. Wea. Rev., 149, 

2539–2557, https://doi.org/10.1175/MWR-D-20-0353.1.   

These are all good questions/points!  We’ve reworked the pretornadic–nontornadic comparison to use the 

30 min prior to peak low-level rotation for the nontornadic storms as in VDB21 (as measured by the peak 

nrot value in GR2 for each storm), except for storms in which the apparent low-level circulation was likely 

a result of vertical sidelobe contamination or for which no clear low-level circulation was evident.  Cases 

in which no clear circulation could be identified were discarded from the nontornadic dataset in the 

comparison.  This didn’t notably change the results for ZDR column area, hailfall area, or separation angle, 

but did mostly eliminate the pretornadic/nontornadic differences in ZDR column depth. 

I'm not sure if there's been a sufficient amount of research to show that the SVC and LFVVS "play an 

important role in whether a given storm is likely to produce a tornado".  The work that I'm aware of is 

generally from a small number of numerical simulations and a very limited number of observed cases.  This 

isn't to say that the SVC or LFVVS isn't important—I'm just not sure we know enough right now to know 

whether that's true.  If the authors feel otherwise, please add additional references as supporting evidence. 

Good point—this section was intended to provide examples of internal supercell features which could be 

important in tornado production, but we ended up lumping features which have a fair bit of evidence about 

their importance (RFD buoyancy, cyclic mesocyclogenesis) with features with comparatively less evidence 

(the SVC and LFVVS).  We’ve replaced the mention of the SVC/LFVVS features with a mention of 

baroclinic generation of surface vertical and near-surface streamwise vorticity in the supercell cold pool 

and updated the references accordingly. 

The hailfall signature in SPORK is established using Z and ZDR thresholds.  To a first order, this is probably 

fine, but I’m wondering if the authors considered using results from the Hydrometeor Classification 

Algorithm (HCA)/Hail Size Discrimination Algorithm (HSDA) instead, since the HCA/HSDA is likely to 

provide a more robust estimate of the location of hail given the added discriminatory power of CC/ρhv and 

KDP.  I recognize that this would mean either running the HCA on the base data or fetching the Level 3 data 

that have the HCA output in them, but it is worthwhile to look at how the simple Z–ZDR thresholds compare 

to the HCA-determined hailfall areas, at least for a few cases.  Regardless, it is probably relevant to add, at 

the end of the quoted sentence above, something about how this generally holds true at S band by adding, 

for example, the following:  “… relatively low values of ZDR (<0.5–1 dB), at least at S band (e.g., Ryzhkov 

et al. 2013; Snyder et al. 2017).”  At X band, hail may be associated with much lower Z.  

The S-band clarification has been added to the text.  We also spent a while trying to get the Level-III HCA 

data into Python to compare hailfall areas calculated using the HCA’s hail classification to our threshold-

based methodology, but the first source we looked at didn’t have the HCA files, and we had trouble 

figuring out which level III files from the second source contained the HCA output.  As coding up the full 

Park et. al. (2009) HCA would be rather time-consuming, we ended up skipping this comparison. 

The algorithm uses the 1-km ARL CAPPI instead of the lowest radar tilt (1st paragraph in section 2a).  I 

may have missed this earlier, but what happens if that lowest radar tilt (usually 0.5°) is centered above 1 km 

ARL?  This is essentially getting at “what’s the maximum range of storms being examined”, unless the 

objective analysis scheme is extrapolating the lowest-available-level down to 1 km ARL. 

The objective analysis scheme does extrapolate data from the lowest-available scan down to 1 km, 

provided that scan is still within the vertical radius of influence that the Barnes analysis scheme is using. 

Tables 1 and 2 in VDB20 indicate that there were 32 and 31 supercells examined, respectively (i.e., 63 total 

https://doi.org/10.1175/MWR-D-20-0353.1
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supercells).  Are all of these different than the 50 supercells used to train the algorithm noted in the 

previous section?  

These are all different from the 20 supercells used in the training dataset; however, a number of storms are 

used in both the VDB20 dataset and the 51-storm testing dataset.  Since the overlapping storms are not 

used to train the algorithm but only to evaluate it, this shouldn’t lead to an unrealistic estimate of 

algorithm performance.  The uses of the 20-storm and 51-storm datasets have been clarified in the text. 

There are a lot of “may” speculative instances later in [section 2b] when differences between the SPORK 

and the manual results are discussed.  Can you look at some of the "misses" to figure out why the gridded 

ZDR columns differ so much from the subjectively analyzed ZDR columns? 

To look into this further, we conducted a detailed examination of all times from the verification dataset in 

which a column over 3.5 km deep or 30 km
2
 was missed.  This analysis revealed several main reasons that 

columns were missed.  The most common was that a very narrow but deep manually-identified column was 

missed by the algorithm in a storm with lots of inferred hailfall.  These columns were misclassified as 

spurious by the random forest due to their small area (or just weren’t picked up as possible objects to begin 

with), and the gridding process also seemed to make them more difficult to identify by smoothing their 

higher ZDR values together with the low ZDR values in surrounding lofted hail/graupel.  In a few other 

instances, part of the supercell was erroneously identified as a separate storm by the tracking algorithm, 

and the ZDR column was erroneously assigned to that spurious storm object.  Finally, in the rarest failure 

mode, large columns in very large, elongated storms were misclassified as spurious due to their great 

distance relative to the algorithm-detected storm center, even with that distance normalized by storm area 

in the random forest.  Making small adjustments up or down in the Z thresholds used for the tracking 

algorithm can often eliminate the spurious storms which lead to the second failure case.  A discussion of 

these failure cases has also been added to the manuscript.   

[Minor comments omitted...] 

 

Second review: 

 

Recommendation:  Accept with minor revisions. 

 

Summary:   The paper nicely summarizes a new software tool that automates the collection of a handful of 

thought-to-be-relevant polarimetric characteristics of convective storms (and, more specifically, 

supercells). The authors’ revisions to the paper are appreciated.  My minor suggestions for changes to 

verbiage and punctuation are included in a separate document with tracked changes.  Below are the very 

limited number of comments that do not pertain to such minor suggestions.  This manuscript has improved, 

especially in terms illustrations and overall motivation.  I have no further comments and recommend 

acceptance.  

 

Thanks again for your helpful comments!  We’ve made the minor changes you suggested to the document.  

 

In my first review, I mentioned the possibility of leveraging the HCA results to assess hailfall extent rather 

than relying solely on the Z-ZDR pairs for hail identification.  In response to this comment, the authors 

noted that they could not find the HCA data.  For completeness, I’ll point out that Level 3 data, in which 

the HCA output is contained, are available quite easily from the online archive accessible through the 

Weather & Climate Toolkit software package.  You can download a tar file in the “NOAA Big Data” tab of 

the “Data Selector” (change source to “NEXRAD Level III”) and then access the files in the “Local Disk” 

tab when files have been untarred. I’ve included an example screenshot below. 
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Thanks for showing us this—it’s certainly easier to load the HCA files in WCT than trying to load them 

directly into Python.  Subjectively comparing the HCA output to the SPORK hailfall areas for a few cases 

showed that the region SPORK identified as hailfall was generally smaller than the small hail (or hail w/ 

rain in older HCA data) region identified by the HCA, but larger than the “large hail” or “giant hail” 

regions identified in more recent HCA output. 
 

Regarding the sentence “Several possible explanations exist for the lower correlation between the manual 

and algorithm-calculated ZDR column depth values.”  Are there some cases in which the differences are 

particularly high? If so, can you look into those cases in a slightly more detailed manner to determine why 

the differences are so large?  It’s fine to provide reasonable speculations for why the differences may exist, 

but you have both the automated and manually identified data, so you should be able to look at the raw data 

to figure out why the differences exist. You probably don’t want to do this for all cases, but it may be worth 

looking into if there are some particularly “egregious” cases with major differences. 
 

That’s a good point.  An examination of all cases where the storm-mean value of maximum column depth 

was more than 1 km different from the manual value, showed that cases when SPORK’s column depth was 

substantially larger most often were the result of high ZDR from TBSSs just above a column which weren’t 

removed by SPORK’s QC, or from the vertical extension of >1 dB ZDR by the gridding process already 

mentioned in this section.  Cases where SPORK had a substantial low bias in column depth were mostly the 

result of tilted columns where SPORK’s vertical continuity requirement caused it to underestimate the 

column depth. This section has been rewritten in light of these results. 
 

What’s the definition of “persistent” [midlevel mesocyclone] here?  Please consider quantifying.  On a 

similar note, consider quantifying what “the vast majority” means as it pertains to “column areas exceeding 

40 km2 in our dataset” (even if it’s simply a parenthetical statement that includes the specific proportion for 

which that holds). 
 

We didn’t set a specific time criterion for a persistent midlevel mesocyclone, but the storms did need to 

display one for the whole analysis period so a lower bound would be ~30 min for this dataset, and we’ve 

added this to the text.  We’ve also added a parenthetical with the portion of column areas in our dataset 

exceeding 40 km
2
 which were tornadic (71%). 

 

[Minor comments omitted...] 
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REVIEWER D (Matthew R. Kumjian): 

 

Initial Review: 

 

Reviewer recommendation:  Accept with major revisions. 

 

Summary:  The authors describe updates to the SPORK software package originally outlined in WV21.  

Namely, the new toolkit now calculates ZDR column metrics, in addition to those associated with ZDR–KDP 

signature separation at low levels.  The new algorithm is then applied to ~200 supercells, roughly evenly 

split between tornadic and nontornadic storms.  Various metrics quantifying differences in dual-pol radar 

signatures between tornadic and nontornadic supercells are presented, and compared to previous studies 

that used different methods and/or smaller sample sizes. 

 

This is an interesting study that sheds some new light on the problem of dual-polarization radar analyses of 

supercell storms, particularly in trying to discern between those that produce tornadoes and those that do 

not.  Some of the findings are quite striking, and, although consistent with previous works, do add to the 

confidence in the potential operational utility of the signatures.  I have a large number of comments and 

suggestions for improving the manuscript, but don’t see any show stoppers.  Thus, I recommend Major 

Revisions, and would like to see the revised manuscript before recommending acceptance for publication. 

 

First, thanks for your helpful review! We’ve made almost all of the changes you suggested, and we 

definitely think they’ve helped make this a better manuscript. 

 

[Editor’s note:  omitted identical description of fixed SPORK bug as in Reviewer A reply.] 

 

Substantive/General Comments: 

 

1.  Weaknesses in describing dynamics/processes.  In general, I found some of the connections of 

signatures or behaviors of signatures to supercell processes to be weak or somewhat imprecisely worded.  

For example, it is unclear to me how results about the midlevel ZDR column features are consistent with 

low-level mesocyclone steadiness, given the much different processes at play.  Can the author please 

elaborate on how the dynamics of these two are linked? 

 

Our initial thought was that the results of VDB17 and VDB20, which showed less variable ZDR columns in 

tornadic storms compared to nontornadic storms and strongly tornadic storms compared to weakly 

tornadic storms, hint at steadier midlevel mesocyclones in these storms which are better able to intensify 

and maintain strong, steady low-level mesocyclones via tilting and stretching of storm-generated and 

environmental low-level vorticity.  In storms where the ZDR column is less steady, this may indicate 

disruptions in the midlevel updraft which may weaken its ability to support the low-level mesocyclone 

below via the processes mentioned above.  However, to simplify this section and focus more on the updraft 

width arguments presented by Trapp et al. 2017 and Sessa and Trapp 2020, the mention of low-level 

mesocyclone steadiness has been removed. 

 

“Nontornadic supercells may be…”:  I have a few problems with this sentence.  First, this sentence has a 

few “mays” and comes across as a bit speculative.  Does a storm’s forward flank outflow often “make its 

way beneath the meso cyclone [sic]”? How does cold outflow impede stretching?  (I understand what the 

authors are implying, but the wording is rather imprecise.) Does the low-level mesocyclone do the 

stretching?  This sentence should be qualified that it is speculation, and should be cleaned up to accurately 

reflect the dynamics. 

 

This section has been cleaned up to describe the dynamics more accurately. 

 

Further, there is no physical justification presented by the authors that large areal extents of large hail 

would imply greater negative buoyancy generation than large areal extents of heavy rain.  I would guess 

that it may depend on the low-level environment:  drier environments would inhibit hail melting but 



Wilson and Van Den Broeke  02 August 2022 

37 

promote rain evaporation, and moister environments would do the opposite.  Some explanation of the 

processes linking these thoughts should be included here or where the hypothesis is first introduced. 

 

We’ve added text discussing the possibility that drier low-level environments with high LCLs that inhibit 

melting and allow large areas of hail to reach the surface are also favorable for cold RFDs that may 

hinder tornadogenesis to this section. 

 

The discussion of ZDR column width (and by proxy, updraft width) is interesting, but I’m left without a 

concrete explanation of the correlations.  Instead of vague “expectations,” connecting the environmental 

factors to the processes that lead to wider updrafts (and thus ZDR columns) would be stronger here.  Peters 

et al. studies have advanced our understanding of the controls of updraft width, and Lin and Kumjian (JAS, 

in press) also discuss how CAPE may influence updraft width.  The inconsistency with Peters et al. 

deserves some further discussion, too.  Why the inconsistency?  Is it because ZDR column width is not a 

robust proxy for updraft width? 

 

We’ve reworked this section to mention the consistency with the results from Lin and Kumjian (2022) and 

elaborate on the inconsistency with Peters et al. (2020).  We’ve also wondered how well ZDR columns 

really represent updraft areas in supercells (especially in storms with large amounts of hail where the 

column may partially be masked out by frozen scatterers), so we’ve added a mention of this uncertainty to 

the paper as well.  A study comparing overshooting top areas and ZDR column areas in a large sample of 

storms would be a really interesting way to address this. 

 

2.  Discussion of previous results with little to no statistical significance.  At times in the manuscript, 

especially when reviewing prior studies, the authors make claims about relationships between quantities or 

metrics, only to subsequently undercut those claims by saying there is no statistical significance to the 

relationship.  [Two locations cited.]  It’s totally fine for papers to report null results, but I believe there is a 

difference in implication between saying “There were no statistically significant differences between 

Quantity A and Quantity B,” and “Quantity A was larger than Quantity B, but the difference was not 

statistically significant.”  The former seems preferable, and perhaps more honest, in my opinion. 

 

This is a good point.  We ended up removing both of these mentions, as they were not critical to the 

background here. 

 

3.  Data Presentation and Methods. I have a few questions/concerns about the methods, and presentation 

of the data/results. 

 

Figure 3:  there are quite a few points where the manual detection identified large areas, and the algorithm 

detected zeroes.  Were these cases inspected to see what the root cause was?  Some discussion is warranted 

(i.e., a manually identified 4-km deep ZDR column, which is extraordinary—not detected by the algorithm is 

somewhat concerning). 

 

A detailed examination of all times from the verification dataset in which a column over 3.5 km deep or 30 

km
2
 was missed showed several root causes.  The most common was that a very narrow but deep manually 

identified column was missed by the algorithm in a storm with plentiful inferred hailfall.  These columns 

may have been misclassified as spurious by the random forest due to their small area, and the gridding 

process may also make them more difficult to identify by smoothing their higher ZDR values together with 

the low ZDR values in surrounding lofted hail/graupel.  In a few other instances, part of the supercell was 

identified as a separate storm, and the ZDR column was erroneously assigned to that spurious storm object.  

Finally, in the rarest failure mode, large columns in very large, elongated storms were misclassified as 

spurious due to their great distance relative to the algorithm-detected storm center, even with that distance 

normalized by storm area in the random forest.  Making small adjustments up or down in the Z thresholds 

used for the tracking algorithm can often eliminate the spurious storms which lead to the second failure 

case.  A discussion of these failure cases will also be added to the manuscript.   
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A general question about averaging over 30-min period:  supercell storms can undergo significant 

variations in intensity, updraft width, etc., over a 30-min period.  Is there any physical justification (aside 

from consistency with previous studies by the authors) for averaging over this period? 

 

We mostly chose this averaging interval for consistency with previous work, but we’ve also run the 

tornadic-nontornadic comparisons with 15- and 10-min averaging intervals and the results didn’t notably 

change.  

 

4. Conclusions.  I think some revision can help make the conclusion stronger and more informative for 

readers, particularly those who may skip to the end.  For the bullets:  try to be a bit more concrete, in case 

readers skip to this section.  “Fairly well” and “less strong” are vague enough to not be informative.  When 

describing the relationships to environmental factors in the final bullet, instead of lots of qualitative 

discussion of smaller/larger or higher/lower, you should explicitly include the correlations.  A simple (r = 

xx) would suffice, probably.  This is important because the correlations are, after all, rather low.  Without 

that context, someone skimming the paper may take away a stronger message than the data suggest given 

the current wording. 

 

The correlations have been added to this section of the conclusions, as well as to the environmental 

comparisons section of the results.  Some of the qualitative wording has also been removed. 

 

[Minor comments omitted...] 

 

Second review: 

 

Recommendation:  Accept with minor revisions. 

 

General comment:  The authors have done considerable work in improving the manuscript, and fixing a 

notable error in the area calculations (which allows for improved comparisons with previous studies).  The 

authors also re-did the analyses including a more fair comparison between time periods analyzed for the 

tornadic and nontornadic classes.  Sensitivities to the thresholds chosen are discussed, and the language 

about weak correlations and statistical significance has been appropriately tempered.  All of these amount 

to a manuscript that is in much better shape, and I have only a few relatively minor comments.  Kudos to 

the authors for their hard work in improving the study! 
 

Thanks again for all of your insightful comments!  We’ve addressed the scientific comments below and 

made all the changes suggested in the technical/stylistic comments except where noted.   

 
[Substantive] scientific comments:  I still think this sentence needs further discussion: “..indicating that 

this signature may have limited utility in differentiating between tornadic supercells and nontornadic storms 

which still produce strong low-level rotation.”  The results quoted here are from a much smaller sample 

size than the Loeffler et al. (2020) data and the Homeyer et al. (2020) data, as well as your current results.  

Further, there is an implication that the previously studied non-tornadic supercells didn’t have strong low-

level rotation.  That’s clearly not explicitly stated in either if you read the case selection criteria for those 

two studies. 

 

Those are fair points—we’ve reworked this section to note that comparisons between these studies are 

difficult due to their differing sample sizes and selection criteria for nontornadic supercells.  We’ve also 

added a mention of new results from Healey and Van Den Broeke (2022)’s AMS presentation showing little 

difference between the separation angles of tornadic and nontornadic supercells in close proximity (albeit 

with a similarly small sample size to Van Den Broeke (2021)). 

 

[Minor comments omitted...] 


