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ABSTRACT 
 

The continued presence of systematic errors in operational forecasts of return flow over the Gulf of 

Mexico has motivated an investigation into this problem.  The theme of the work is use of a low-order 

mixed-layer model that is faithful to the phenomenon in the context of dynamic data assimilation.  Data 

assimilation experiments in the identical-twin mode determine the best place to make observations that 

minimize the forecast error through adjustment of model controls.  The emphasized controls are those 

associated with the fluxes of heat and moisture from sea to atmosphere.  Results indicate that the best 

observations are at that time and place when the outflowing continental air passes over the warmest sea 

surface temperatures.  In the case studied, this warmest zone is directly over the Loop Current.  

Observations at times long after the modified air leaves these warmest waters lead to relatively poor control 

adjustments and little improvement in the forecast.  If input to data assimilation is restricted to observations 

of a single model variable over short intervals of time (the order of several hours), results are relatively 

poor.  Yet, a significant improvement is forthcoming if one of the observations is replaced by an 

observation from another model variable.  This result is understood through arguments based on forecast 

sensitivity to model control.   The paper ends with discussion of steps to be taken that hold promise for 

correcting systematic error in return-flow forecasts.  

–––––––––––––––––––––––– 
 

1.  Introduction 

Cold-air outflows over the Gulf of Mexico 

(GoM) were first studied by Palmén and Newton 

(1951). They were intent on understanding the 

exchange of momentum between mid-latitudes 

and the tropics in support of a mechanism that 

could maintain the subtropical jet stream—a 

general circulation viewpoint. Dallavalle and 

Bosart (1975) then studied cold-air outbreaks 

from a different perspective, viz., evolution of the  

_____________________ 
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synoptic flow and subtleties of interaction 

between the cold airmass and the GoM. 

In the mid- to late 1970s, Texas A & M 

University Professor Walter Henry became 

fascinated with the anticyclonic turning of the 

cold airmass and its return to the Gulf’s coastal 

plain in response to the eastward movement of 

the attending large-scale anticyclone (Henry, 

personal communication, 1987).  He coined the 

term “return flow” to describe this process, and 

two of his master’s degree students used the term 

in titles of their theses (Johnson 1976; Karnavas 

1978).  He later published a paper on the 

climatology of frontal penetrations into the GoM 
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during 1967–1977, with special emphasis on the 

return-flow events (Henry 1979, Table 2).  Over 

the 11-y period of study, 88 return-flow events 

occurred during the cool season (November–

April), and 22 return-flow events occurred during 

warm season (May–October, with none in July 

and only one in August)—an average of 8.0 

events during the cool season and 2.0 events 

during the warm season.  

In response to concerns about systematic 

errors in National Centers for Environmental 

Prediction’s (NCEP’s) operational forecasts of 

return flow over the GoM in the mid-1980s, a 

consortium of research organizations proposed 

investigation of this weather prediction problem 

to the National Science Foundation (NSF). 

NSSL took the lead in this proposal, but strong 

support came from several organizations, 

especially the Southern Region of the National 

Weather Service (NWS), the National Severe 

Storms Forecast Center (NSSFC, now the Storm 

Prediction Center, SPC), and the Space Science 

and Engineering Center (SSEC) at University of 

Wisconsin-Madison.  The NSF award was 

granted in late 1987.  The organizational 

structure of the project, called GUFMEX (Gulf 

of Mexico Experiment), and a summary of 

results from the field program in 1988 can be 

found in the paper by Lewis et al. (1989).  

During this program, six return flow events were 

observed from land, sea, and air in a coordinated 

fashion.  These data were central to a series of 

contributions that appeared in the Journal of 

Applied Meteorology’s August 1992 issue. 

Despite improvements in operational 

products at NCEP over the past 20–30 y that 

directly bear on GoM weather forecasts
1

, 

improvements such as better sea surface 

temperatures (SSTs) (instituted in 2001) and 

convective schemes such as the Betts-Miller-

Janjic scheme (Janjic 1994,2001), the systematic 

errors remain as discussed in the Supplement to 

Lewis et al. (2016; R. Maddox, Supplement).  

For a March 2015 return-flow event, Maddox 

(2016) compared forecasts from the large-scale 

spectral Global Forecast System (GFS) and the 

smaller-scale North American Mesoscale 

Forecast (NAM with a 12-km grid).  In 

conclusion, he said: 

                                                           
1

 Improvements began with efforts at the 

National Meteorological Center (NMC) which 

changed its name to National Centers for 

Environmental Prediction on 1 October 1995. 

…while the current generation of 

operational numerical forecasts have 

improved, relative to the older models 

mentioned in the body of the paper [Lewis 

et al. 2016]
2
, there are still problems with 

many aspects of the model forecasts for 

air mass modification during transits over 

the warm waters of the GoM. 

Difficulty in making accurate return-flow 

forecasts stem from the absence of upper-air 

observations over the GoM.  The initial structure 

of the lower tropospheric air just prior to entry 

into the GoM is determined with fidelity, but after 

convective heating and moistening commences, it 

is often difficult to determine the boundary-layer 

structure.  The following quotes from 

NOAA/NCEP meteorologist Geoffrey Manikin
3
 

discussed this continuing problem with 

forecasting the boundary layer structure.  We 

include two quotes, one from 2007 and the other 

from 2020, respectively, separated by the slash 

(“/”): 

Moisture return is a key issue in 

convective forecasting, as subtle low-level 

changes can be the difference between a 

stable sounding or one able to support 

deep convection…the problem is most 

pronounced at the leading edge of the 

deeper moisture.  It is often the case that 

there is a well-mixed temperature profile 

(constant 𝜃) , but a poor shape of the 

dewpoint curve. / My statement was 

definitely true in 2007, and I think it's still 

true for the most part today. …SST data is 

much better now, and model physics have 

improved greatly in the past 13 years, but 

we still lack vertical profile data over the 

Gulf.  That said, I think we are much 

better now at simulating return flow in the 

models, but challenges remain, and the 

concept of determining where new obs 

would be best placed seems like a 

worthwhile pursuit. 

Regarding the challenges that still remain, the 

important recent work of Cohen et al. (2017) has 

noted the extreme sensitivity to cold-season 

forecasted low-level thermodynamic structure 

(specifically low-CAPE) based on the choice of 

planetary boundary-layer scheme in high-

resolution models like NAM and WRF [Weather 

                                                           
2
  Bracketed information inserted by the authors. 

3
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Research and Forecasting Model]. Cohen et al. 

(2017; section 3) showed that slight errors in the 

WRF forecast of these low-level structures in the 

southeast USA were central to poor severe-storm 

forecasts/outlooks. 

Given that routine upper-air observations 

over the GoM are unavailable, it is prudent 

nevertheless to consider the hypothetical 

situation where upper-air observations will 

become available.  Then the question becomes:  

In the context of data assimilation where 

forecasts are blended with observations, where is 

the ideal place to make observations?  That is, 

placement that is most likely to correct forecast-

model controls and thereby improve the forecast.  

This is the theme of the current investigation. 

The paper is structured as follows:  section 2 

discusses the problems facing return-flow 

prediction.  In section 3, the model and 

observations from GUFMEX are described.  The 

data-assimilation methodology is given in section 

4 and section 5 provides the results from 

numerical experiments.  The discussions and 

conclusions are detailed in section 6.  An 

appendix discusses the assimilation method and 

presents the equations governing the scheme.  

2.  Uncertainty in return-flow prediction: 

Ensemble viewpoint 

Lewis et al. (2016) designed ensemble 

forecasts of a particular return flow event to 

identify forecast sensitivity to the controls that 

governed a mixed layer model—forecast 

uncertainty in response to changes to the control 

vector.  Control elements were categorically 

divided into initial conditions (IC), boundary 

conditions (BC), and physical/empirical 

parameters (P).  The controls in the ensemble 

forecast are described and numerically specified 

in tables found in Lewis et al. (2016; section 4).  

With the limited number of controls in the mixed 

layer model, roughly 50, the ensemble statistics 

of return flow could be determined very 

accurately based on 200 000 model executions. 

The controls used in the ensemble forecast are 

described and numerically specified in Lewis et 

al. (2016; section 4). 

 

 

Figure 1:  Lagrangian trajectory of modified continental air that left the coastal plain near New Orleans at 

0300UTC 21 February and executed an elongated 3-day anticyclonic path over the GoM, where travel 

times along the trajectory are noted by small filled circles at 6-h intervals.  Isotherms of sea surface 

temperature (in °C) are represented by dashed curves.  The model integration begins at 1800UTC 21 

February, as shown beside the symbol t = 0 (adapted from Fig. 3 in Lewis et al. 2016). 

Terminating

1800 UTC 21 February 
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Figure 2:  Uncertainty in ensemble prediction of 𝑞ℎ, water vapor mass in the mixed-layer column, as a 

function of model controls: a) IC; initial conditions alone, b) BC; boundary conditions alone, c) P; 

empirical/physical parameters alone, and d) the full complement (FC) of controls.   

   

The ensemble forecasts were made along a 

Lagrangian trajectory of low-level air associated 

with the return flow event of 21–25 February 

1988.  This trajectory is shown in Fig. 1.  The 

boundaries of the warm Loop Current, a 

persistent feature in the eastern GoM are 

determined from both sea surface temperatues 

(SSTs)  and deeper sea temperatures (at ~150-

m depth for example) as discussed by Molinari 

(1987).  In the year of our study, 1988, the Loop 

Current extended farther north than the 

climatological average and was therefore labeled 

a “deep intrusion”.  The boundaries of this Loop 

Current are quite precisely defined by the 24°C 

sea surface temperature (SST) contour shown in 

Fig. 1
4
. 

  

Figure 2 presents ensemble prediction results 

along the trajectory from t = 0 to t = 48 h for 𝑞ℎ, 

the mass of water vapor in a mixed layer 

                                                           
4
 These boundaries can be verified by examining 

SSTs based on infrared radiance measurements 

during the week of 20–26 February 1988 as 

shown in Lewis (2007; Fig. 4).  
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of  height ℎ  and water vapor mixing ratio 𝑞 , a 

surrogate for precipitable water (𝑃𝑊  in mm) . 

The forecast panels present uncertainty due to IC 

alone (a), BC alone (b), P alone (c), and the full 

complement FC (d), uncertainty due to the 

combination of the three components.  

 

The large dots in the panels display the mean 

values of water-vapor mass at 6-h intervals along 

the trajectory.  The arrows emanating from mean 

values at 12-h intervals depict the range of 

ensemble forecasts.  The standard deviations of 

the forecasts for P alone and FC are noted along 

the arrows by the small dots.  The standard 

deviations of 𝑞ℎ in units of 𝑘𝑚 ∙  𝑔 𝑘𝑔−1 at t = 

48 h for each of the components follow: 1.12 

(IC), 0.48 (BC), 4.20 (P), and 4.45 (FC).  In units 

of mm for 𝑃𝑊 , 𝑃  exhibits a relatively large 

range from 8–28 mm compared to the other 

components, and this range is slightly less than 

the range exhibited for FC, 4–29 mm. The range 

for BC is especially small, 17–20 mm, and IC is 

significant, 14–20 mm, but considerably smaller 

than the range for 𝑃. 

In the case of severe-storm forecasting, the 

degree of uncertainty shown in Fig. 2 makes it 

difficult for forecasters to decide on the type of 

weather associated with a particular return-flow 

event—a wide spectrum that includes fog and 

stratus, shallow convection, and severe 

convective storms.  The recent paper by Molina 

and Allen (2019) makes it clear that forecasting 

tornadic events is made especially challenging 

in return-flow situations. 

3.  The model and observations from 

GUFMEX 

a.  Observations 

Our study relies on observations collected 

for a particular return-flow event during 

GUFMEX I in February–March 1988)
5
.  The 

event occurred over the period 21–24 February 

and was associated with movement of a 

maritime Polar (mP) airmass from the Pacific 

Northwest to the GoM.  The satellite imagery of 

this event over the period 21–23 February is 

shown in Fig. 1 of Lewis et al. 2016.  The 

erosion of the low-level stably stratified airmass 

as it moved over the GoM’s warm water was 

                                                           
5

 Two field programs were conducted during 

Project GUFMEX (GUFMEX I in February/  

March 1988 and GUFMEX II in March 1991). 

captured by a series of rawinsonde observations 

from Salvia, a U. S. Coast Guard ship that 

generally tended buoys in the GoM’s shelf 

waters (Figs. 3 and 4).  The salient features of 

potential temperature (θ) and water-vapor 

mixing ratio profiles follow: 

θ
6
 profile: 

i) Superadiabtic layer,  

 
𝑑𝜃

𝑑𝑧
< 0, 𝑙𝑜𝑤𝑒𝑠𝑡 50 − 100 𝑚 

(ii) A layer of constant 𝜃 

(iii) A positive jump in 𝜃  atop the constant-𝜃 

layer 

(iv) A layer of stable air, 
𝑑𝜃

𝑑𝑧
> 0, above the jump 

Water vapor profile: 

(i) In the lowest 50–100 m, 
𝑑𝑞

𝑑𝑧
< 0 

(ii) Layer of (nearly constant) 𝑞 

(iii) A negative jump in 𝑞  atop the constant-𝑞 

layer 

(iv) A lapse of water vapor above the jump 

The thermodynamic profiles conform to 

mixed-layer model theory as discussed in the 

review paper by Tennekes and Driedonks (1981).  

These standard profiles are diagrammed in Fig. 7 

of Lewis et al. 2016. 

b.  Governing equations 

The dynamical model used in this study 

follows from classic mixed-layer model theory.  

The first use of this mixed-layer model to 

forecast return flow is found in Liu et al. 

(1992).  The trajectory of the low-level air 

shown in Fig. 1 defines the Lagrangian 

framework where speed and direction along the 

trajectory came from operational surface 

analyses at National Hurricane Center (NHC).  

From copies of these operational analyses at 6-h 

intervals, streamlines and isotachs were drawn 

by hand, and then following methodology 

found in Saucier (1955; section 10.06), the 

trajectory shown in Fig. 1 was created.  

                                                           
6

 θ is expressed in °C relative to Kelvin 

temperature 273.15 K (= 0°C ) throughout the 

paper. Thus, a potential temperature of 283.15 K 

is expressed as 10°C. 
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Figure 3:  Vertical profiles of θ over the GoM (in °C relative to 273.5 K) derived from rawinsonde launches 

aboard U. S. Coast Guard ship Salvia at roughly 6-h intervals, following outflowing continental air along a 

near-Lagrangian trajectory in February 1988 (same as Fig. 5 in Lewis 2007). 

 

Figure 4:  Vertical profiles of water vapor mixing ratio (expressed in g kg
–1

) derived from the same data 

mentioned in the Fig. 3 caption (same as Fig. 6 in Lewis 2007). 

There are five variables in the mixed-layer 

model: the constant potential temperature and 

constant water vapor mixing ratios (𝜃, 𝑞) , 

respectively, jumps in potential temperature and 

mixing ratio atop the mixed layer (𝜎, 𝜇) , 

respectively, and the height of the mixed layer 

(𝐻).   Turbulence at the interface between the 

mixed layer and the stratified layer is accounted 

through an entrainment velocity 𝑤𝑒 . The fluxes 

of heat and water vapor from the ocean to 

atmosphere, the driving forces within the model, 

are represented by 𝑤′𝜃′̅̅ ̅̅ ̅̅ ]𝑠  and 𝑤′𝑞′̅̅ ̅̅ ̅̅ ]𝑠 , 

respectively, where subscript 𝑠 refers to the sea 

surface.  Thermodynamic structure as measured 

by rawinsondes generally agree with 

idealizations except for observed jumps.  These 

jumps are smooth functions of height as opposed 

to strict discontinuities. 

Equations that define time variation of 

variables along the Lagrangian trajectory follow: 
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𝑑𝜃

𝑑𝑡
= ( 𝑤′𝜃′̅̅ ̅̅ ̅̅ ]𝑠 + 𝑤𝑒𝜎)𝐻−1  (1) 

𝑑𝐻

𝑑𝑡
= 𝑤𝑒 + 𝑤̅ (2) 

𝑑𝜎

𝑑𝑡
= 𝛾𝜃 ( 

𝑑𝐻

𝑑𝑡
− 𝑤̅) −

𝑑𝜃

𝑑𝑡
  (3) 

𝑑𝑞

𝑑𝑡
= ( 𝑤′𝑞′̅̅ ̅̅ ̅̅ ]𝑠 + 𝑤𝑒𝜇  )𝐻−1  (4) 

𝑑𝜇

𝑑𝑡
= 𝛾𝑞 ( 

𝑑𝐻

𝑑𝑡
− 𝑤̅) −

𝑑𝑞

𝑑𝑡
  (5) 

with entrainment velocity 

𝑤𝑒 = 𝜅𝑤′𝜃′̅̅ ̅̅ ̅̅ ]𝑠𝜎
−1,   (6) 

where 𝜅  is the empirically determined 

entrainment coefficient—typically a small 

fraction such as 0.2 or 0.3.  The vertical 

gradients of potential temperature and water-

vapor mixing ratio in the stratified layer, 𝛾𝜃 > 0 

and 𝛾𝑞 < 0 , respectively, are determined from 

rawinsonde observations (Figs. 3 and 4), and 𝑤̅ 

is the large-scale subsidence determined from 

wind observations over the Gulf as shown in Fig. 

10 of Lewis et al. 2016. 

To achieve closure, fluxes are parameterized 

in terms of a first-order turbulent transfer 

processes where transfer coefficient 𝐶𝑇 is used to 

represent heat and water vapor transfer as found 

in Panofsky and Dutton (1984): 

𝑤′𝜃′̅̅ ̅̅ ̅̅ ]𝑠 = 𝐶𝑇𝑉𝑠 (𝜃𝑠 − 𝜃)   (7) 

𝑤′𝑞′̅̅ ̅̅ ̅̅ ]𝑠 = 𝐶𝑇𝑉𝑠 (𝑞𝑠 − 𝑞)   (8) 

where 𝑉𝑠  is the translation speed along the 

trajectory and (𝜃𝑠 − 𝜃)  and (𝑞𝑠 − 𝑞)  are 

differences between saturated values of potential 

temperature and water vapor mixing ratio at the 

air/sea interface and the corresponding constant 

values of 𝜃 and 𝑞 within the mixed layer. 
 

 

 

Figure 5:  Geometry of changes in θ jump. 

The physical interpretation of these mixed-

layer equations is based on fluxes of heat and 

water vapor from sea to air, and entrainment of 

potential temperature and water vapor mixing 

ratio from the stratified layer into the mixed 

layer.  Equations governing the change of 

potential temperature and water vapor mixing 

ratio, Eqs. (1) and (4), are quite similar—

increases due to fluxes from sea to air, and 

increases (in the case of potential temperature) 

and decreases (in the case of water vapor 

mixing ratio) in response to entrainment from 

the stratified layer.  The changes in these two 

variables are inversely proportional to the 

height of the layer.  The temporal change in 

height of the mixed layer (Eq. 2) is governed by 

the interaction between large-scale subsidence 

(negative vertical velocity) and the entrainment 

velocity (positive).  
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The jumps in temperature and water vapor 

are best understood via Fig. 5.   If height 

increases during the time interval  𝑡 = 0  to  ∆𝑡, 

then  𝑤𝑒 > −𝑤̅ > 0  and 𝜎  increases due to 

positive 𝛾𝜃 .  If 𝜃  increases during this time 

interval, then 𝜎  decreases.  The same line of 

argument holds for the change in water-vapor 

mixing ratio jump.  The main difference is that 

an increase of height leads to a decrease of water 

vapor mixing ratio due to the entrainment 

process. 

The typical values of parameters in the 

mixed-layer equations are based on 

thermodynamic structures from rawinsondes for 

the 21–24 February 1988 case study and values 

found from the literature.  These values follow: 

𝐶𝑇 = 10−3 

𝐶𝑇𝑉𝑠  =  1.5 × 10−2 𝑚 𝑠−1 

𝛾𝜃 = 6.6 ∙ 10−3  ℃ 𝑚−1 

𝛾𝑞 = − 10−3 𝑔 𝑘𝑔−1 𝑚−1 

𝑤̅ = −(0.5 —1.0) 𝑐𝑚 𝑠−1 

𝜅 = 0.2– 0.3  (9) 

The literature used to estimate these 

parameters follows: (1) 𝐶𝑇, Stage and Businger 

(1981) and Kondo (1975), and (2) 𝜅 , Tennekes 

and Driedonks (1981). The model integration 

begins at 1800 UTC 21 February, identified by t 

= 0 along the trajectory shown in Fig. 1.  The 

initial conditions for variables in the mixed 

layer model are taken from the 1728 UTC 21 

February 1988 rawinsondes (Figs. 3 and 4), and 

given by 

𝜃 = 14.5 ℃ 

𝐻 = 0.90 km 

𝜎 = 0.5 ℃ 

𝑞 = 4.5 g kg−1 

𝜇 = −1.50 g kg−1   (10) 

The boundary conditions along the 

trajectory are 𝜃𝑠 and 𝑞𝑠  at the air/sea interface.  

These fields depend on sea surface temperature 

and surface pressure. The sea surface 

temperatures come from SSEC’s weekly 

averaged temperatures shown in Fig. 1.  The 

surface pressure comes from NHC’s operational 

sea-level analysis available at 6-h intervals. 

4.  Data assimilation  

a.  Identical twin strategy: True and forecasted 

states 

We assume systematic error is present in the 

dynamical model due to uncertainty in control 

parameters that govern turbulent transfer of heat 

and water vapor from sea to air—in particular, 

the turbulent exchange coefficient 𝐶𝑇  and the 

entrainment parameter 𝜅.  To allow a variable 

exchange coefficient, we represent the 

exchange coefficient as 𝐶𝑇 = 𝑐 ∙ 10−3  where 𝑐 

is a nondimensional factor the order of 1.  We 

also assume systematic error in the forecast is 

due to uncertainty in the control element 𝑤̅, the 

large-scale subsidence.  However, we assume 

that this element of control will not be 

corrected.  This simulates the case where a 

particular element of control is not suspected of 

error, and therefore the data assimilation 

process does not attempt to correct it.  In this 

case, the data assimilation process will make 

corrections to 𝜅 and 𝑐, but not to 𝑤̅.  Even if  𝜅 

and 𝑐 are perfectly corrected, the forecast will 

contain error due to the uncorrected 𝑤̅. 

Our approach follows “identical twin” 

methodology where two differing states are 

defined.  The controls for the two states differ 

only in the specification of  𝑐,  𝜅, and 𝑤̅.  That 

is, the other elements of control (initial 

conditions, boundary conditions, and other 

physical/ empirical parameters) are identical for 

the two states—one labeled “truth” and the 

other labeled “forecast”.  Observations are 

created from “truth”.  The true state assumes 
(𝜅, 𝑐, 𝑤̅) = (0.3, 1.2, −0.6)  and the forecast 

state assumes (𝜅, 𝑐, 𝑤̅) = (0.2, 1.0, −0.5).  The 

subsidence parameter 𝑤̅  is nondimensionalized 

with a scale equal to 1 𝑐𝑚 𝑠−1 .  Thus, 𝑤̅ =
−0.6  and −0.5  represent a subsidence of 

0.6 cm s−1 and 0.5 cm s−1, respectively, for the 

true /observed state and the forecast state. 

b.  Observations created from true state 

At 6-h intervals along the Lagrangian 

trajectory (starting at t = 0), observations are 

created by integrating the governing equation 

with true control.  The observation vector 𝐙(𝑡) 

at each time is given by Z(t) = 

(𝑍𝜃(𝑡), 𝑍𝐻(𝑡), 𝑍𝑞(𝑡) )
𝑇 , observations of the 

potential temperature, height of the mixed 
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layer, and water vapor mixing ratio, 

respectively. The jumps in temperature and 

mixing ratio are not included in the observation 

vector since large uncertainty exists for these 

variables. The forecast vector 𝐅(𝑡) =
(𝜃(𝑡), 𝐻(𝑡), 𝑞(𝑡) )𝑇 , forecasts of potential 

temperature, height of the mixed layer, and 

water vapor mixing ratio, respectively, is 

determined by integrating the governing 

equations with forecast-state controls. From 

vectors 𝐅(𝑡)  and 𝒁(𝑡) , the forecast error or 

innovation 𝐈 (𝑡)  = 𝐙(𝑡) − 𝐅(𝑡)  is known.  The 

sum of the squares of the three components of 

𝐈(𝑡) constitutes the cost function at the 

particular time.  Data assimilation seeks to 

minimize this cost function by optimally 

adjusting the two forecast controls (𝜅, 𝑐) =
(0.2, 1.0).  

c.  Forecast Sensitivity Method (FSM) of data 

assimilation 

The variational data assimilation process 

used in this study is labeled Forecast Sensitivity 

Method (FSM) (Lakshmivarahan and Lewis, 

2010; Lakshmivarahan, et al., 2017, Ch. 2).  

The development of this method as applied to 

return-flow dynamical constraints is found in 

the appendix. Since the cost function associated 

with FSM and other optimal methods of 

assimilation typically involve physical variables 

with differing units, it is important to put 

variables in nondimensional form such that they 

have the same order of magnitude.  In this case, 

scales 10 ℃, 10 g kg−1, and 1 km are used for 

𝜃, 𝑞 and 𝐻, respectively.  This scaling delivers 

values the order of 1 for each of the variables. 

Graphical display of results will be presented in 

nondimensional form unless otherwise 

specified.  

5.  Results from the numerical experiments 

a.  Forecast errors and forecast sensitivities 

The observed and forecased states of 𝜃, 𝐻, 
and 𝑞 are displayed in Fig. 6.  The difference 

between observed and forecasted states for 𝜃 

and 𝐻  are largest around t ≈20 h, while the 

largest differences between observed and 

forecasted states for 𝑞  are beyond 20 h.  

Forecast errors for 𝜃 and  𝐻 are relatively small 

near t = 0 and beyond t = 40 h whereas the 

forecast errors for 𝑞  are small up through  

t = 10 h. 

The turbulent heat flux is proportional to the 

difference between forecasted 𝜃  and the 

boundary value 𝜃𝑠 while the turbulent moisture 

flux is proportional to the difference between 

forecasted 𝑞 and the boundary value 𝑞𝑠 . These 

difference fields are shown in Lewis et al. 

(2016)—Fig.8 (dimensional form).  From this 

figure, convective forcing clearly vanishes 

beyond t ≈50 h while vapor flux forcing is still 

active beyond t ≈50 h although relatively small 

compared to maximum forcing near t ≈10 h.   In 

the absence of significant thermal forcing 

beyond t ≈36 h, near the southmost point along 

the trajectory, the experiment will be restricted 

to the time interval between t = 0 to t = 36 h—

the active penetrative convection period. 

It is also important to examine the forecast 

sensitivity fields generated through solution to 

the augmented dynamical equations. These 

sensitivities are displayed in Figs. 7 and 8—Fig. 

7 exhibiting forecast sensitivity to 𝜅 and Fig. 8 

exhibiting forecast sensitivity to 𝑐.  All forecast 

sensitivities with respect to the two parameters 

are positive except for the forecasted 𝑞  with 

respect to 𝜅.  This negative sensitivity can be 

understood through examination of Eq. (4), the 

equation governing time evolution of 𝑞.  In this 

equation we note that an increase in 𝜅 leads to 

an increase in moisture flux from the surface, 

but the same increase in 𝜅  increases the 

negativity of the second term in this equation, 

𝑤𝑒𝜇 𝐻−1 where this second term outweighs the 

first term.  However, in the case of forecasted 𝑞 

sensitivity to 𝑐 , the first term (positive) 

outweighs the second term (negative) and leads 

to a positive value of forecast sensitivity to 𝑐. 

The fields of sensitivity generally reach a 

“saturation point”, that point where sensitivity 

is relatively constant.  In effect, the sensitivity 

functions accumulate the action of the fluxes up 

through t = 36 h (period of active convection), 

but beyond that point forcing is small to 

nonexistent.  For the height sensitivity fields, 

there comes a point where subsidence 

dominates surface forcing and height sensitivity 

begins to decrease. 
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Figure 6:  The evolution of the observation field (solid lines) and the forecasted field (dashed), over the 57-

h period defined by the trajectory.  

 

 

Figure 7:  The sensitivity of forecasts 𝜃, 𝐻, 𝑎𝑛𝑑 𝑞 with respect to 𝜅. 
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Figure 8:  The sensitivity of forecasts 𝜃, 𝐻, 𝑎𝑛𝑑 𝑞 with respect to 𝑐. 

 
Figure 9:  Adjustment of controls (𝜅, 𝑐) after two 

iterations of the FSM data assimilation scheme 

using only those observations at separate times 

t= 6, 12, …, 36.   

b.  Observation placement 

Adjustments to control are made at 6-h 

increments along the trajectory  at t = 6, 12, 18, 

24, 30, and 36 h—that portion of the trajectory 

where convective forcing is active. The process 

adjusts control at each 6-h increment separately. 

Once the adjustment is made, these values of 

control are used to integrate the governing 

equations over the time period t = 0 to t = 57 h.  

Two iterations are made at each time. In all 

cases, the initial operating point in the space of 

control is (𝜅, 𝑐) = (0.2, 1.0) .  Adjustments to 

control at each time are shown in Fig. 9 (two 

iterations).  The adjustments are viewed relative 

to the initial operating point.  In this same figure, 

 

Figure 10:  Adjustment of controls (𝜅, 𝑐) after 3 

iterations using observations at t = 12 h.  

we identify the true control (𝜅, 𝑐) = (0.3, 1.2) 

and draw a vector from the initial operating point 

to true control.  This vector serves to graphically 

indicate the best path from the initial operating 

point to true control.   Adjustments associated 

with t = 12 h deliver the best results, an adjusted 

control closest to the true control.  One further 

iteration for the t = 12 h adjustment brings it 

slightly closer to true control as shown in Fig. 

10.  The iterative process is stopped when further 
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iterations produce only small changes in the 

value of the cost function. The termination point 

is generally associated with flatness of the cost 

function in the space of control.  

The quantitative aspects of the iterative data 

assimilation process are shown for adjustment at 

two times (Table 1), t = 12 h and t = 36 h—the 

best result at t = 12 h and the poorest result at t = 

36 h.  The relative smallness of the condition 

number for t = 12 h is also an indication that 

adjustment at this time will give better results.  

The condition number as a function of time 

between t = 0 and t = 36 is displayed in Fig. 11.  

Having determined that the best results come 

from data assimilation at t = 12, we plot the 

evolution of the mixed-layer variables using the 

adjusted controls based on 4 iterations at this 

time.   These controls are inserted into the 

dynamical equations to make the forecast.  This 

forecast is compared to the observations in 

Fig. 12.  Note that the fit of height to 

observations at later times is not as good as the 

fit at earlier times.  This is because height is 

strongly sensitive to subsidence, and the 

observed structure is associated with larger 

subsidence than forecasted.  

As time approaches t = 0, the condition 

number becomes exponentially large and 

essentially warns against making observations 

close to t = 0.  At this point in time, the forecast 

errors become extremely small as do the 

sensitivity fields.  If initial conditions were 

among the controls to be adjusted, the condition 

number would not become extremely large near  

t = 0 since the initial analysis error (incorrect 

initial condition) and forecast sensitivity to initial 

conditions would be nonzero at t = 0.  

 

Figure 11:  Time variation of condition number 

from the P matrix that was used in FSM 

assimilation.  

 

Table 1:  Stepwise correction of control.  Symbols and terms as described in the text. 

t = 12 h 

Iteration 
 

Control –∇Ϳ Ϳ 
Condition 
Number 

κ c − 𝛁𝜿𝑱 − 𝛁𝒄𝑱   

Start 0.200 1.000 0.1225 0.0648 0.0101 12.0 

1 0.222 1.269 0.0445 0.0003 0.0006 17.6 

2 0.248 1.229 0.0171 –0.0011 0.0002 15.3 

3 0.259 1.202 0.0065 –0.0004 0.0000(8) 14.1 

4 0.265 1.191 0.0024 –0.0002 0.0000(8) 13.7 
 

t = 36 h 

Iteration 
 

Control –∇Ϳ Ϳ 
Condition 
Number 

κ c − 𝛁𝜿𝑱 − 𝛁𝒄𝑱   

Start 0.2000 1.000  0.0054 0.0550 0.0054 16.8 

1 0.1930 1.191 0.0476 0.0006 0.0004 25.9 

2 0.2021 1.1891 0.0257 –0.0024 0.0004 24.2 

3 0.2077 1.1739 0.0111 0.0010 0.0004 25.2 
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Figure 12:  Comparison of observation (the true state) and forecasted state based on the best adjustments at  

t = 12 h. 

From discussion in David Blackwell’s classic 

undergraduate textbook, Basic Statistics 

(Blackwell, 1969, Ch. 6), we ask the question: 

“What is the worth of the predictor(s)?”.  Or 

alternately stated, what is the value of adjusting 

controls to remove the systematic bias in the 

forecast?  The worth 𝑊 is given by 

𝑊(𝑣) =
𝑆𝐸(𝑣)−𝑆𝐸𝑎𝑑𝑗(𝑣)

𝑆𝐸(𝑣)
    (11) 

where 𝑣  is one of the variables (𝜃, 𝐻, 𝑜𝑟 𝑞) , 

𝑆𝐸(𝑣)  is the squared error of the initially 

prescribed forecast, and 𝑆𝐸𝑎𝑑𝑗(𝑣) is the squared 

error in the adjusted forecast.  If 𝑆𝐸𝑎𝑑𝑗(𝑣) =

𝑆𝐸(𝑣), then worth of the predictor 𝑊 = 0, but if 

𝑆𝐸𝑎𝑑𝑗(𝑣) = 0  (forecast and observations 

coincide), then worth 𝑊 = 1.  Using 𝑆𝐸(𝑣) and 

𝑆𝐸𝑎𝑑𝑗(𝑣)  from the unadjusted forecasts and 

observations (shown in Fig. 6) and the adjusted 

forecast and observations (shown in Fig. 12), we 

find 𝑊(𝜃) = 0.96, 𝑊(𝐻) = 0.82, 𝑎𝑛𝑑 𝑊(𝑞) =
0.92 .  The good-fit adjusted forecasts (visual 

comparison of Figs. 12 with Fig. 6) are 

confirmed with these quantitative measures.  

6.  Discussions and conclusions 

A low-order model that is faithful to the 

evolution of boundary layers in return-flow 

episodes has been used to determine ideal 

observation placement over the GoM.   Through 

data assimilation, the ideal observation 

placement leads to model-control correction that 

in turn serves to improve the forecast plagued by 

systematic error.  

Results from the numerical experiment 

indicate that optimal observation placement is 

over the area of greatest flux of heat and 

moisture from sea to air: continental air passing 

over the Loop Current.  Observations at times 

long after the modified air leaves these warmest 

waters lead to relatively poor adjustments to 

control.  A combination of observations (i.e., 

observations of more than a single boundary-

layer variable), also leads to improved results. 

This fact was uncovered by examination of 

forecast sensitivity to elements of control, a 

feature of the FSM data assimilation scheme. 
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Examination of ocean-based rawinsonde 

observations as shown in Figs. 3 and 4 during the 

outflow phase, and the corresponding 

rawinsonde observations during the return-flow 

phase of this same event (Fig. 7 of Lewis and 

Crisp 1992), makes it clear that observations 

showing this detail in thermodynamic-structure 

would go far to improve operational return-flow 

forecasts.  However, in this age of emphasis on 

remote sensing, especially over the world sea, 

there is little chance that this will happen through 

the use of rawinsondes. 

Following valued discussions with the 

NCEP/EMC data assimilation group (D. Kleist 

and C. Thomas 2020, personal communication) 

and satellite meteorologists (S. Kidder and W. 

Smith 2020, personal communication), the best 

chance for getting boundary layer 

thermodynamic structures comparable to those 

from rawinsondes will eventually come from 

satellite measurements of blended total 

precipitable water (bTPW) and from retrieved 

temperature/vapor profiles from hyperspectral 

radiance instruments (now on polar orbiters like 

Suomi NPP and NOAA-20). Theoretical limits 

for vertical resolution, temperature, and humidity 

from the hyperspectral radiance instruments—1–
3 km, 1–2 K, and 10–20%—have yet to be 

achieved, but the active research projects 

designed to do so have been detailed in Weisz et 

al. (2020). 

The online bTPW at 

https://www.star.nesdis.noaa.gov/portfolio/detail

_bTPW.php, produced daily at the NOAA STAR 

Center for Satellite Applications and Research 

and within NESDIS, ,
 
also holds promise for 

delivering quality estimates of water vapor 

mixing ratio.  The strengths (and weaknesses) of 

TPW measurements from various satellites have 

been accounted in this blended product.  In the 

return-flow situations, water in the mixed layer is 

water vapor with only a slight amount to spray 

near the surface, so the bTPW would be a 

measure of the water-vapor mixing ratio.  

Further, since the air is typically dry above the 

mixed layer, higher levels contribute little to the 

vertically integrated TPW. 

This research has paid strict attention to a 

typical yet singular return flow event.  We know 

of significant variance in return flows, as clearly 

presented by Henry (1979) and in the 

climatological study by Crisp and Lewis (1992).  

Thus, some caution is necessary in assuming that 

the results in this study apply to all return flow 

episodes.  Yet, it’s safe to assume that satellite 

measurements of the mixed-layer temperature, 

water vapor mixing ratio, and height of the 

mixed layer, or some combination of these 

variables, in the vicinity of those places where 

the cold and dry continental airmass traverses the 

warmest SSTs will go far to improve operational 

forecasts of return flow.  Further, as found from 

Maddox’s study of recent operational forecasts 

of return flow (Maddox 2016), the trajectories 

appear to be forecasted well, and that would 

allow identification of locations where the 

continental air will pass over those warmest 

waters.  Thus, maybe 12–24 h before the 

cold/dry air enters the Gulf, efforts can be made 

to make satellite observations at these optimal 

locations. 
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APPENDIX:   

Mechanics of data assimilation 

A1.  Sensitivity calculation 

The Forecast Sensitivity Method (FSM) 

requires knowledge of the forecast sensitivities 

to 𝜅 and 𝑐. With five variables in the mixed layer 

model and two elements of control that will be 

adjusted, there are ten forecast sensitivities, five 

associated with 𝜅  and five associated with c.  

These sensitivities are represented as vectors  

𝐒𝛋 = ( 
𝜕𝜃

𝜕𝜅
,
𝜕𝐻

𝜕𝜅
 ,

𝜕𝑞

𝜕𝜅
,
𝜕𝜎

𝜕𝜅
,
𝜕𝜇

𝜕𝜅
)𝑇 and 

 𝐒𝐜 = ( 
𝜕𝜃

𝜕𝑐
,
𝜕𝐻

𝜕𝑐
 ,

𝜕𝑞

𝜕𝑐
,
𝜕𝜎

𝜕𝑐
,
𝜕𝜇

𝜕𝑐
)𝑇 .   

The equations governing these sensitivity 

variables are found by differentiating the basic 

set of mixed layer equations with respect to 𝜅, 

yielding five equations, and with respect to 𝑐 , 

delivering another set of five equations.  Thus, 

the coupled set of equations used in this study 

involves the basic set and the ten sensitivity 

equations, a coupled set of fifteen ordinary 

differential equations.  To give some substance 

to the process, the derivation of the forecast 

sensitivity of 𝜃 with respect to 𝜅  follows: 

𝜕

𝜕𝜅
(
𝑑𝜃

𝑑𝑡
) =

𝑑

𝑑𝑡
(
𝜕𝜃

𝜕𝜅
) =

𝜕

𝜕𝜅
[ 𝑐𝑉𝑠(1 + 𝜅)

(𝜃𝑠 − 𝜃)

𝐻
 ] 

= 𝑐𝑉𝑠  
(𝜃𝑠−𝜃)

𝐻
+ 𝑐𝑉𝑠 (1 + 𝜅)

𝐻
𝜕(𝜃𝑠−𝜃)

𝜕𝜅
 – (𝜃𝑠−𝜃)

𝜕𝐻

𝜕𝜅

𝐻2   

(A.1) 

where c accounts for variability in the transfer 

coefficient.  The time evolution of  
𝜕𝜃

𝜕𝑘
 depends 

on solutions to the basic mixed-layer equations 

through 𝜃  and 𝐻 , and also dependent on the 

forecast height sensitivity to 𝜅 , 
𝜕𝐻

𝜕𝜅
 , which is 

governed by an equation similar to the one just 

derived. The initial conditions for each of these 

ten “augmented” equations are equal to zero.  

That is, if you change these parameters, the 

values of the basic variables do not change at the 

initial time.  The sensitivity equations depend on 

the solution to the basic equations, but not vice 

versa.  And as will be noted below in this 

appendix, the FSM only requires knowledge of 

forecast sensitivities associated with the 

observed variables (𝜃, 𝐻, 𝑞), i. e., six of the ten 

forecast sensitivities —  
𝜕𝜃

𝜕𝜅
 , 

𝜕𝐻

𝜕𝜅
, 

𝜕𝑞

𝜕𝜅
,  

𝜕𝜃

𝜕𝑐
, 

𝜕𝐻

𝜕𝑐
, 

𝜕𝑞

𝜕𝑐
. 

But knowledge of these six sensitivities requires 

knowledge of all ten sensitivities.  

A2.  Adjustments to control 

To simplify notation, the three forecast 

variables are represented as a column vector: 

𝐗(𝑡) = [

𝜃(𝑡)
𝐻(𝑡)

𝑞(𝑡)
] = [

𝑥1(𝑡)
𝑥2(𝑡)

𝑥3(𝑡)
]   (A.2) 

Further, we represent the observations of 

these variables, in the same order as the 

forecasts, as 

𝐙(𝑡) = [

𝑧1(𝑡)
𝑧2(𝑡)

𝑧3(𝑡)
]   (A.3) 

The cost function 𝐽 is defined as the one-half 

the sum of squared differences between forecast 

and observations: 

𝐽 =
1

2
[𝐗(𝑡) − 𝐙(𝑡)]𝑇[𝐗(𝑡) − 𝐙(𝑡)]  (A.4) 

where (… )𝑇 represents the transpose of a vector 

or matrix. 𝐽 is an implicit function of the variable 

control parameters 𝜅 and 𝑐 through the forecasts. 

The unique characteristic of FSM is 

determination of adjusted control parameters 

through minimization of the cost function that 

depends on knowledge of forecast sensitivities to 

𝜅  and 𝑐 .  The fundamental assumption is that 

adjusted forecasts, denoted by [… ]̂ , take the 

following form based on a first-order Taylor 

expansion about the current estimate of control:  

𝑥̂1 (𝑡) = 𝑥1 (𝑡) +
𝜕𝑥1 (𝑡)

𝜕𝜅
∆𝜅 +

𝜕𝑥1(𝑡)

𝜕𝑐
∆𝑐 (A.5) 

𝑥̂2 (𝑡) = 𝑥2 (𝑡) +
𝜕𝑥2 (𝑡)

𝜕𝜅
∆𝜅 +

𝜕𝑥2(𝑡)

𝜕𝑐
∆𝑐 (A.6) 

𝑥̂3 (𝑡) = 𝑥3 (𝑡) +
𝜕𝑥3 (𝑡)

𝜕𝜅
∆𝜅 +

𝜕𝑥3(𝑡)

𝜕𝑐
∆𝑐 (A.7) 

Or in matrix form  

𝐗̂(𝑡) = [

𝑥̂1 (𝑡)

𝑥̂2 (𝑡)

𝑥̂3 (𝑡)
] =

𝐗(𝑡) +

[
 
 
 
 
𝜕𝑥1(𝑡)

𝜕𝜅

𝜕𝑥1(𝑡)

𝜕𝑐
𝜕𝑥2(𝑡)

𝜕𝜅

𝜕𝑥2(𝑡)

𝜕𝑐
𝜕𝑥3(𝑡)

𝜕𝜅

𝜕𝑥3(𝑡)

𝜕𝑐 ]
 
 
 
 

[
∆𝜅
∆𝑐

] = 𝐗(𝑡) + 𝐒(𝑡)∆ℂ  

(A.8) 
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where 𝐒(𝑡)  is the sensitivity matrix and ∆ℂ  is 

incremental-change control vector. The first-

order approximation to the cost function takes 

the form 

𝐽 ≈
1

2
[𝐗(𝑡) + 𝐒(𝑡)∆ℂ − 𝐙(𝑡)]𝑇[𝐗(𝑡) +

𝐒(𝑡)∆ℂ − 𝐙(𝑡)]   (A.9) 

a quadratic function in the unknown incremental-

change control vector.  A necessary condition for 

minimization of the cost function is vanishing of 

its derivative with respect to the unknown 

incremental-change control vector. Taking the 

derivative and setting it equal to zero gives the 

result 

∆ℂ = (𝐒𝑇𝐒)−1𝐒𝑇𝐃 = 𝐏−1 𝐒𝑇𝐃,   (A.10) 

where 𝐏 ≡ (𝐒𝑇𝐒)  and 𝐃(𝑡) = 𝐙(𝑡) − 𝐗(𝑡) , 

difference between observation and forecast (i.e. 

Innovation)—new information brought out by 

observation 𝐙(𝑡) beyond that provided by the 

forecast 𝐗(𝑡).  

By adding the adjustment to the initial value 

of control, a new control is found.  It is used to 

find a solution to the mixed-layer equations that 

has reduced the cost function.  The process is 

used in an iterative fashion where the new 

forecast and new sensitivities and the original 

observations are used to produce successive 

estimates of the control. The process is 

terminated when sequential values of the cost 

function show little change.  

A3.  Gradient of the cost function 𝑱 , 𝛁𝑱 =
(𝛁𝜿𝑱, 𝛁𝒄𝑱)

𝑻, and condition number  

The gradient of 𝐽  in the space of variable 

control, the 𝜅 − 𝑐 space, is an important quantity 

in all variational data assimilation schemes—3D-

Var and 4-D Var schemes as well as FSM as 

developed and discussed in Lewis et al. (2006) 

and Lakshmivarahan et al. (2017).  At an 

operating point in this space (current estimate of 

the variable control), it is important to know the 

value of each component of this vector, a two-

component vector in our case.  In minimization 

of the cost function (a scalar quantity) by 

steepest descent or descent generally, a “flat” 

region of 𝐽 around the operating point presents a 

problem.  In this situation, the pathway to the 

cost function minimum is ill-defined.  In FSM, 

this problem is identified by the condition 

number of the P matrix that was defined above.  

The condition number, the ratio of the largest 

eigenvalue of the matrix to the smaller 

eigenvalue of P matrix, indicates the presence of 

a flat region when this number is very large 

(orders of magnitude >1).  Thus, in our study, we 

calculate the condition number for each 

adjustment to control, but we also calculate the 

2-componnet gradient of the cost function.  With 

knowledge of the sensitivities and Innovation, 

the gradient of the cost functional 𝐽 in Eq. (A.4) 

can be found as follows: 

∇𝐽 = (∇𝜅𝐽, ∇𝑐𝐽)
𝑇 = 𝐒𝑻(𝐗(𝑡) − 𝐙(𝑡)),  (A.11) 

the product of 𝐒𝑇  (2×3 matrix) and the 

innovation (3×1 column vector) resulting in the 

2×1 gradient vector.  
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REVIEWER COMMENTS 

 

[Authors’ responses in blue italics.] 

 

REVIEWER A (Lewis D. Grasso): 

 

Initial Review: 

 

Recommendation: Accept with minor revisions. 

 

Substantive Comments:  End of section 4.2, the Innovation is defined as Z(t) – F(t), that is obs minus 

forecast. Yet in the beginning of section 5, Innovations are advertised as being plotted in Fig. 7.  However, 

the figure caption for Fig. 7 states “…forecast-minus-observations…”; that is, F(t) – Z(t).  Please clarify. 

 

“Innovation” (difference between forecast and observation) is standard terminology for the data 

assimilation community, but it is generally unfamiliar to those outside this community.  Indeed, it is 

appropriate to introduce this word alongside the more familiar term “forecast error”.  Further, the 

discussion of Fig. 7 has been changed to avoid this confusion. 

 

Section 5a: Innovations are stated as being “small” and “very small”. Perhaps you would be willing to 

quantify those two terms.  One risk of using “small” and “very small” is that one might say, “Well, if the 

difference between a forecast and observations is small or very small, then the forecast does not need to be 

improved.” 

 

Point well taken.  In first paragraph, discussion has been modified slightly to avoid the interpretation that 

“forecast does not need to be improved”.  The nondimensional form of the variables also contributes to the 

sense of very small differences. 

 

End of paper:  Results from one experiment that used one trajectory; that is, you have a sample size of one. 

From that one sample, you then provide guidance for the general population of all trajectories for all return 

flow situations. As a way to alert readers about pitfalls of making inferences from small sample sizes, 

would you be willing to add some text to inform readers of a cautionary note—you pick the word/phase if 

you don’t like “cautionary note”—that the paper contains one experiment and one trajectory and the ability 

to make inferences about general return flows? 

 

How true a statement! To caution the reader, [a cautionary note was added]. 

 

[Minor comments omitted…] 

 

Second Review: 

 

Recommendation:  Accept. 

 

General Comment:  All of my comments/suggestions have been acceptably addressed; hence, I accept this 

manuscript. 

 

 

REVIEWER B (William A. Gallus Jr.):  

 

Initial Review:  

 

Recommendation:  Accept with minor revisions.   

 

I believe more context is needed in your last paragraph.  You do a good job in the paper making the case 

for where it would be most important to have observations, and the discussion seems to imply this is the 

area where upper air observations should be made.  You then end up concluding that only satellites 
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currently provide what is needed.  But I am confused because I thought satellite data is already being 

incorporated for DA, and since satellite data cover large sections of the planet “equally” (meaning the 

satellite does not have spotty coverage related to land or sea presence), wouldn’t these data already be 

getting used over the regions where the continental air flows over the Loop Current?  I get the impression 

maybe the satellite measurements that you talk about are not yet being used in DA?  If this is the case, you 

should make that clearer in this discussion. 

 

We have received a most heartening response from Daryl Kleist, chief of the data assimilation and quality 

control unit at NCEP, and one of the scientists working in that division, Cathy Thomas.  We have included 

[a] statement to bring the readership up-to-date on work at NCEP related to inclusion of satellite data in 

GSI. 

 

[Minor comments omitted…] 

 

Second Review: 

 

Recommendation:  Accept with minor revisions. 

 

General Comment:  This article has been substantially improved by the changes made by the 

authors.  I only have one remaining minor concern.   

 

[Minor comments omitted…] 

 

 

REVIEWER C (Ariel E. Cohen): 

 

Initial Review: 

 

Recommendation:  Accept with minor revisions. 

 

Specific Comments:  The need to reference Manikin is outstanding and very well-articulated, and I’m 

really appreciative of the incorporation of this direct statement.  I feel that the combination of this 

statement, and the Molina and Allen publication provides some substantiation and motivation for the 

operational need to evaluate and improve moisture-return forecasts.  However, I think a bit more 

motivation would be helpful to further motivate just how important it is.  I do recommend referencing 

Cohen et al. (2007) that specifically highlights the sensitivities of boundary-layer moisture profiles within 

the return-flow regimes and warm sectors of extratropical cyclones during the cold season (i. e., low-

CAPE, high-shear regimes).  The support of severe convection in this regime often benefit greatly from 

dynamical perturbation pressure processes resulting from updraft-shear interactions, in many cases where 

boundary-layer moisture is only partially modified, as opposed to reaching complete equilibrium.  It is in 

these environments where the low-CAPE nature results in substantial difference in severe-thunderstorm-

threat assessment for marginal differences in PBL thermodynamic structure as addressed by Cohen et al. 

(2017), further motivating the need to improve return-flow processes.  I think addressing the present work 

in the context of this motivator may be useful from a big-picture perspective—not to mention other return-

flow regimes supporting convective weather. 

 

Mentioning the work of Cohen et al. (2017) is a must. It seems most appropriate to place this discussion 

right after Manikin’s quote in the Introduction. 

 

Is the use of “innovations” standard here?  I understand where the authors are coming from, though I 

wonder if “forecast errors” might represent the description more. 

 

“Innovation” (difference between forecast and observation) is standard terminology for the data 

assimilation community, but it is generally unfamiliar to those outside this community.  Indeed, it is 

appropriate to introduce this word alongside the more familiar term “forecast error”.  Thus, in the first 
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paragraph of section 4.1, the following change is made: “…vectors 𝐅(𝑡) and (𝑡) , the forecast error or 

Innovation 𝐈 (𝑡) = 𝐙(𝑡) − 𝐅(𝑡) is known.  The sum…” 

 

[Minor comments omitted…] 

 

Second Review: 

 

Recommendation:  Accept with minor revision. 

 

General Comment:  The Lewis et. al. paper is in great shape.  Only things I found were very minor... 

 

[Minor comments omitted…] 

 


