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ABSTRACT 
 

This study used high-resolution real-data WRF simulations of Hurricane Ivan (2004) to document the 

structure of potentially tornadic supercells embedded in tropical cyclone (TC) rainbands.  The simulated 

TC track and intensity matched well with observations post landfall, and the simulated TC structure closely 

replicated the observed shape and rainbands, as evident by an assessment of observed composite and 

simulated radar reflectivity. TC tornado surrogates (TCT-Ss) were identified and calibrated using 

thresholds based on percentile values of maximum updraft helicity (UHmax) and simulated radar reflectivity. 

Although the magnitude of UHmax generally decreased as the simulated TC moved inland, sensitivity 

testing revealed that a threshold based on the 99.95% percentile value of UHmax achieved optimal TCT-S 

coverage and agreement with observed TC tornado (TCT) tracks on domains with 3-km and 1-km grid 

spacings.  Three cells were identified at three different stages of the TC inland evolution and were found to 

have hook appendages resembling supercells found in midlatitudes.  The cells produced storm tops of 

13 km, with rotating cores with depths of 4 km above ground level.  Although results in this study are 

unique to Hurricane Ivan, the authors believe the use of convection-allowing models and UH-based 

surrogate methodologies can be applied to other TC cases. 

–––––––––––––––––––––––– 

 

1.  Introduction 

 

In addition to coastal storm surge, tropical 

cyclones (TCs) produce strong winds, tornadoes, 

and flooding rains as they move inland 

(Czajkowski and Kennedy 2010).  Hazards such 

as these can lead to loss of life and property 

within inland communities (Rappaport 2000; 

2014).  They also can complicate coastal 

evacuations, particularly if the coastal evacuees  

__________________________ 

Corresponding author address: Dereka 

Carroll-Smith, 1400 J. R. Lynch, Jackson, MS 

39217, E-mail:  dcarroll@ucar.edu  

flee to inland locations affected by one or more 

of the aforementioned hazards. 

 

Indeed, successful predictions of TC impact 

must exhibit skill in the TC track and intensity 

after landfall, and contemporaneously provide 

accurate and timely guidance on smaller-scale 

convective storms as the TC evolves inland. 

Implied here is the need for convection-allowing 

numerical prediction models (CAMs) (e.g., Kain 

et al. 2008, 2010), which have been proven to be 

valuable for predictions of convective hazards 

associated with midlatitude weather systems.   

Although research exists using CAMs to predict 

tornadoes developing in environments similar to 
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those spawned by tropical cyclones (Cohen et al. 

2015; Cohen et al. 2017), such models have not 

been proven useful for convective-hazard 

predictions within landfalling TCs, to our 

knowledge.  Such is the basic interest of this 

research, with a particular focus placed herein on 

tropical-cyclone tornadoes (TCTs).   

 

A comprehensive review of TCT knowledge 

can be found in Edwards (2012), so only 

particularly relevant background information is 

included here.  For example, although it is 

uncommon to have more than a few tornadoes 

per TC on average, there are cases in which over 

one hundred tornadoes were spawned.  Such 

cases include Hurricane Beulah in 1967 (115 

TCTs), Hurricane Frances in 2004 (103 TCTs), 

and Hurricane Ivan in 2004 (118 TCTs) 

(Edwards 2012).  The majority of these TCTs 

were rated at the lower end of the Fujita and 

Enhanced Fujita scales (Edwards et al. 2013).  

Stronger TCTs have been documented, however, 

such as in association with Hurricane Ivan 2004, 

which produced 18 F2 tornadoes and one F3 

tornado (Edwards 2010).  

TCTs typically develop from “miniature 

supercells,” which are smaller and shallower 

than those found within the U.S. Great Plains, 

(McCaul 1991; McCaul and Weisman 1996; 

Baker et al. 2009; McCaul et al. 2004).  For 

example, Eastin and Link (2009) showed that the 

dimensions of these miniature supercells have an 

average mesocyclone diameter of about 5‒7 km 

and an average depth of 4 km.  These dimensions 

can make TCT detection difficult with 

operational Doppler radar and associated 

automated algorithms, compared to the Great 

Plains supercells that have a mesocyclone 

diameter of ≈10 km and depth of 9 km (Eastin 

and Link 2009).  Edwards et al.  (2012) also 

noted that while 88% of TCTs form out of 

miniature supercells (in the modes of discrete 

cells, cell in lines, and in clusters), the remaining 

12% form out of nonsupercellular convective 

modes, such as quasi-linear convective systems 

and clusters.  

Tornadic miniature supercells are commonly 

found in the outer TC rainbands, 200‒400 km 

from the TC center (Schultz and Cecil 2009), 

although some tornadoes are known to have 

formed within the eyewall and inner core 

(McCaul 1991).  The northeast quadrant of the 

TC is favored for tornado development due to 

ample CAPE and vertical wind shear (McCaul 

1991; Verbout et al. 2007). McCaul (1991) 

found that helicity and bulk shear are maximized 

in the northeast quadrant.  That sort of parameter 

space, in addition to moderate CAPE values, 

contributed to Ivan’s three-day, center-relative 

tornado distribution plotted in Fig. 1 (Baker et al. 

2009).  TCs that make landfall along the U.S. 

Gulf Coast are more likely to have a higher 

number of reported tornadoes compared to TCs 

that make landfall along the U.S. Atlantic Coast.  

This is because the Gulf Coast is exposed to the 

northeast quadrant of the TC longer than is the 

Atlantic Coast when TCs make landfall along the 

respective coastlines (Verbout et al. 2007).   

The curvature of the TC track is also known 

to affect tornado development.  Using synoptic 

composites of 83 TCs, Verbout et al. (2007) 

showed that midlatitude troughs provide 

additional deep-layer and low-layer vertical wind 

shear, which favor mesocyclogenesis and 

tornadogenesis, respectively, when a TC 

recurves.  A diurnal signal associated with the 

number and strength of TCTs also exists.  More 

inland TCTs have been found to occur during 

daytime hours since the TC supercell 

environment experiences a larger cycle of 

sensible heat flux and thus higher values of 

surface-based CAPE during the daytime (Curtis 

2004; Shultz and Cecil 2009).  

 

Figure 1: North-relative polar plot of tornadoes 

(blue inverted triangles) spawned by Hurricane 

Ivan over a three-day period, with respect to 

azimuth (plotted every 30°) and range (radials 

every 200 km from the storm center).  Adapted 

from Fig. 1b in Edwards (2012). 
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This diurnal effect on TC-supercell formation 

has been explored further using quasi-idealized 

numerical modeling, as have the effects of dry 

air intrusions and the sea-to-land transition of the 

TC (Morin and Parker 2011). They found that 

TC landfall and dry air intrusions are not 

necessary conditions for supercell development, 

and that the most optimal ingredients are found 

offshore, which is consistent with previous 

literature (Baker et al. 2009; Eastin and Link 

2009; Molinari and Vollaro 2008).  Dry air 

intrusions have been shown to provide 

thermodynamic environments favorable for 

tornadic activity (Curtis 2004; Edwards 2012), 

however, and the sea-to-land transition 

contributes to supercell development and 

intensification, due to the magnitude of the 

diurnal temperature changes over land versus 

over water.  Finally, Morin and Parker (2011) 

found that the time of day of TC landfall impacts 

the strength, number and lifetime of the idealized 

supercells.  For example, the experiments with 

nighttime landfall produced fewer and shorter-

duration mesocyclones compared to experiments 

with daytime landfall (consistent with Curtis 

2004 and Shultz and Cecil 2009). 

The quasi-idealized approach of Morin and 

Parker (2011) was used to isolate the impacts of 

the environment on simulated supercells; this 

method was considered “quasi” because it 

allowed the simulated supercells to form more 

naturally than in typical idealized studies.  Our 

work presented here differs in that it seeks to 

model an actual event using initial and boundary 

conditions supplied by observations and 

reanalysis data.  Indeed, Morin and Parker as 

well as Green et al. (2011) provide motivation to 

explore the use of high-resolution numerical 

weather prediction models to generate forecast 

guidance on TCT formation.   

With horizontal grid spacings on the order of 

1–4 km, CAMs are capable of nominally 

resolving convective-scale phenomena such as 

the mesocyclones that characterize supercell 

thunderstorms.  Grid-scale updraft helicity (UH) 

is now widely used to identify potential 

(midlevel) mesocyclones in CAM forecasts (e.g., 

Kain et al. 2010; Carley et al. 2011; Clark et al. 

2012, 2013; Sobash et al. 2011, 2016; Schwartz 

et al. 2015a,b; Dawson et al. 2017).  

Additionally, low-level vertical vorticity can 

diagnose near-surface rotation that may indicate 

tornado-bearing low-level mesocyclones (e.g., 

Skinner et al. 2016).  CAMs are now heavily 

used to aid in the forecasting process when 

tornadoes and other severe weather phenomena 

threaten.  

This work uses the Weather Research and 

Forecasting model (WRF; Skamarock et al. 

2008).  We describe the WRF configuration and 

a TCT “surrogate” methodology in section 2.  In 

section 3, we demonstrate the ability of such 

surrogates to reveal the tornado occurrences in 

association with Hurricane Ivan (2004), and then 

further demonstrate the capability of WRF with 

1-km and even 3-km grid spacings to represent 

the bulk structure of TCT-generating supercells.  

The success of WRF in this specific case of 

Hurricane Ivan leads us to conclude in section 4 

that CAMs configured for the TC environment 

indeed do appear to hold promise for TCT 

forecasting.  

2. Methodology 

 

Hurricane Ivan, which was responsible for 25 

deaths in the U.S. and $18.8 billion (2004 USD) 

in damages, served as the case study for this 

research. Ivan (2004) made landfall at 07 UTC 

on 16 September 2004 in Gulf Shores, AL, as a 

Category 3 (Simpson 1974) hurricane.  Ivan 

produced large rainfall amounts, which 

contributed to vast inland flooding, and also 

spawned 118 tornadoes (see Table 1), per the 

TCTOR dataset (Edwards 2010).  The tornadoes 

were concentrated during three periods:  36 

TCTs during the landfall (LF) period (18 UTC 

15 September 2004 to 18 UTC 16 September 

2004); 23 TCTs during the mid-landfall (ML) 

period (18 UTC 16 September 2004 to 18 UTC 

17 September 2004); and 59 TCTs during the 

extratropical transition (ET) (18 UTC 17 

September 2004 to 18 UTC 18 September 2004).  

These periods guided some aspects of the model 

configuration, as described next.  

Table 1:  Observed TCT counts by date. 

Day/Time (UTC)  TCT counts 

15/18‒16/18 36 

16/18‒17/18 23 

17/18‒18/18 59 

Total 118 

a. Model configuration and data 

 

Ivan’s landfall and subsequent evolution were 

simulated over the interval 00 UTC 14 
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September 2004 to 00 UTC 19 September 2004 

using version 3.7 of the Advanced Research 

(ARW) core of the WRF model (WRF-ARW; 

Skamarock et al. 2008).  The computational area 

consisted of an outer domain with 9-km 

horizontal grid spacing, and two, two-way nested 

domains with 3-km and 1-km horizontal grid 

spacing (hereinafter referred to as the 9-km, 3-

km, 1-km domains, respectively) (Fig. 2).  The 

center of the 1-km innermost domain depended 

on the three different periods (LF, ML, ET) in 

Ivan’s inland progression, and thus allowed for 

an assessment of differences in supercell 

structure at each stage.  For the 9-km and 3-km 

domains, WRF was integrated over the entire 

five-day interval; for the 1-km domain, WRF 

was integrated over one-day intervals only, 

beginning at 18 UTC 15 September 2004, 18 

UTC 16 September 2004 and 18 UTC 17 

September 2004, respectively, to correspond to 

the LF, ML and ET periods (Fig. 2).  

 

 

Figure 2:  Configuration of WRF computation domain:  9 km parent domain, nested 3 km domain, and 

three separate nested 1-km domains for the a) LF, b) ML, and c) ET periods (see text).  Click image to 

enlarge. 

  

Data for initial and boundary conditions are 

from the 6-hourly National Center for 

Environmental Prediction Final (NCEP FNL) 

Operational Global Analysis, which is on a 

1°×1° grid, at the surface and at 26 mandatory 

levels from 1000 to 10 hPa (NCAR 2000).  The 

NCEP FNL data are the same as that of the 

Global Forecast System (GFS); however, the 

FNL data are delayed in order to incorporate 

more observations.  

Based on previous tropical cyclone studies 

(e.g. Gentry and Lackmann 2010; Sun and 

Barros 2012; Sun and Barros 2014; Lackmann 

2015) and sensitivity tests by Carroll-Smith 

(2018), the WRF model configuration was set as 

follows.  The Kain-Fritsch (Kain 2004) scheme 

was used to parameterize cumulus convection on 

the outer domain only; convective processes 

were represented explicitly on the 3-km and 1-

km nests.  On all three grids:  the updated Rapid 

Radiative Transfer Model (RRTMG; Iacono et 

al. 2008) scheme parameterized longwave and 

http://ejssm.org/ojs/public/vol14-2/fig2.png
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shortwave radiation; the Eta surface layer 

scheme and Noah land surface model (Chen and 

Dudhia 2001) were used for surface layer 

interactions and surface physics, respectively; 

the Mellor-Yamada-Janjić (MYJ; Janjić 1994) 

scheme parameterized planetary boundary layer 

processes; and the Thompson scheme 

(Thompson et al. 2008) was used to parameterize 

the cloud and precipitation physics.  To improve 

upon the intensity forecasts, sea surface 

temperatures were updated every 6 h, and the 

“isftcflx” is activated using the Garratt 

formulation, option 2 (Lackmann 2015). This 

physics parameter supplies different sensible and 

latent heat values, correcting the surface bulk 

drag and enthalpy coefficients to provide more 

realistic TC intensities and TC inner core 

structure (Green and Zhang 2013; Parker et al. 

2017 and references therein offer details on 

“isftcflx”). 

Note that the sensitivity experiments of 

Carroll-Smith (2018) tested the Yonsei 

University (YSU; Hong et al. 2006) planetary 

boundary layer (PBL) scheme and the WRF 

single moment 6-class microphysics scheme 

(WSM6; Hong and Lim 2006).  Results showed 

that TCT surrogate (section 2b) generation was 

most sensitive to the choice of PBL scheme, 

even though the WSM6 experiments had 

stronger rotating updrafts, owing in part to 

stronger updraft speeds. Nevertheless, the 

combination of Thompson microphysics and 

MYJ PBL led to the best agreement between 

TCT surrogates and observed TCTs. 

a. TCT surrogates 

 

TCT surrogates (TCT-S) were diagnosed on 

land points only, using a simple exceedance 

algorithm based on simulated radar reflectivity 

factor (SRF) and updraft helicity (UH).  Updraft 

helicity is a measure of the intensity of a rotating 

updraft and is defined as the vertical integral of 

the product of vertical velocity and vertical 

vorticity (Kain et al. 2008).  This work examined 

run-time maximum updraft helicity (UHmax) 

computed between 2 and 5 km AGL, at hourly 

(5-min) frequencies on the 3-km (1-km) 

domain(s).  UHmax has been used widely in 

severe weather applications to identify supercells 

and associated hazards (e.g., Kain et al. 2010; 

Carley et al. 2011; Clark et al. 2012, 2013; 

Sobash et al. 2011, 2016; Dawson et al. 2017).   

Green et al. (2011) found UH to be of little 

value in identifying TC supercells spawned just 

offshore by Hurricane Katrina (2004), due to the 

cells being shallow and tilted.  Our preliminary 

findings with simulations of Hurricane Ivan 

suggested the opposite, thus motivating the work 

herein.  In Dawson et al. (2017), percentiles of 

the UHmax distribution were used as thresholds to 

identify surrogates.  We applied this approach 

herein in an effort to account for the resolution 

dependence of UHmax and to account for the 

relative infrequency of tornado-generating 

convective storms within TCs.  Accordingly, the 

99.5%, 99.9%, 99.95%, and 99.99% percentile 

values of the distribution of all non-zero UHmax 

values in the Ivan simulation were used to define 

and then test four different threshold values (see 

Table 2).  As noted, our TCT-S identification 

algorithm required exceedance of a UHmax 

threshold as well as a SRF threshold, set here to 

30 dBZ.  Sensitivity tests were conducted to 

determine the ideal layer of UH to document 

potentially tornadic storms.  UH calculations 

over a 1‒4-km layer yielded only minor 

differences in TCT-S occurrence; UH 

calculations over a 0‒3-km layer resulted in a 

significant over-representation in TCT-S 

occurrence as indicated quantitatively by the 

percentage of domain covered (detailed in 

section 3b). Thus, we have chosen UH 

calculations over a 2‒5-km layer. 

Percentile values of UHmax were assessed on 

the 3-km domain over the entirety of the 

simulation as well as over each of the three 

periods (LF, ML, and ET; not shown) (Table 2).  

Because of the possibility that TCT-generating 

storms would be inadequately represented with 

3-km grid spacings, we also assessed percentile 

values of UHmax on the 1-km domains over each 

period (LF, ML, and ET), from which a 

composite value was determined (1-km_COMP; 

Table 2).  Not surprisingly, higher percentiles 

consistently yielded higher threshold values, and 

the use of higher threshold values in the TCT-S 

algorithm decreased the number of TCT-Ss on 

both the 3-km and 1-km domains, for all periods 

(Table 3).  A discussion of the rationale for 

choosing one threshold over another is provided 

in section 3. 
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Table 2:  Percentile values of UHmax (m
2
 s

‒2
) for the 1-km and 3-km domains. 1-km_COMP and 1-km_IND 

represent the composite and individual thresholds, respectively. 

 

 Period 99.50% 99.90% 99.95% 99.99% Max 

3-km LF,ML,ET 32.01 65.71 82.66 146.75 356.05 

1-km_COMP LF,ML,ET 158.34 377.66 512.42 933.20 2129.07 

1-km_IND LF 265.39 603.35 785.34 1248.19 2129.07 

 ML 133.67 311.70 416.77 828.26 2126.08 

 ET 114.92 250.07 320.41 483.44 1110.96 

 

Table 3:  Numbers of TCT-Ss for the 3-km and 1-km domains for each threshold.  The 1-km_COMP 

threshold was applied to the LF, ML and ET periods. 

 PERIOD 99.50% 99.90% 99.95% 99.99% 

3-KM LF,ML,ET 8414 1875 928 190 

1-KM_COMP LF 22079 6632 3793 841 

 ML 11740 1992 939 202 

 ET 9891 1053 352 16 

1-KM_IND LF 11334 2635 1381 297 

 ML 15380 3116 1547 262 

 ET 16775 3640 1849 437 

3.  Results 

 

a.  Simulation overview 

 

The WRF-simulated Ivan made landfall near 

Dauphin Island (Mobile County), AL, about 48 

km west of the observed landfall location of 

Orange Beach (Baldwin County), AL (Fig 3a). 

Thereafter, the simulated inland track agrees well 

with the inland track from the IBTrAC data 

(Knapp et al. 2010).  Osuri et al. (2013) noted 

TC track biases in WRF-ARW occur despite 

higher resolutions and model initialization 

closest to when TCs are at the “severe cyclone” 

stage.  In the case of WRF-simulated Ivan, the 

westward track bias could be due to the 

initialization time, in addition to the tracking 

algorithm used (tracked the lowest 6 hourly 

mean sea level pressure within the model 

boundary), and lack of data assimilation methods 

that have been found to improve TC track 

forecasts (e.g. Rappaport 2009; Cavallo 2013). 

The IBTrAC data also show that the simulated 

storm, which had a Category 2 intensity at 

landfall, was 16 hPa weaker than that observed, 

but soon converged upon the observed intensity.  

This low intensity bias over the ocean has been 

seen in other WRF simulations of landfalling 

hurricanes (Gentry and Lackmann 2010; 

Lackmann 2015).  Coupled ocean-atmosphere 

models have been used to account for this 

discrepancy; however, we are more focused on 

the inland tornado hazards, so the present 

methods are sufficient.  Also noted are the 

weaker simulated winds at landfall compared to 

observations, although the simulated TC 

sustained stronger winds than observed towards 

the end of the simulation; we attribute this to the 

much higher resolution of wind information in 

the model than in the observations over land. 

SRF within the LF, ML, and ET periods was 

compared to composite reflectivity observations 

during these periods (Fig. 4).  As would be 

expected in a single deterministic model 

solution, there are differences in the details of the 

reflectivity structures, such as in feeder-band 

placements.  However, there is good qualitative 

agreement between SRF and observed composite 

reflectivity, especially in terms of Ivan’s 

evolving shape, size, and rainband structure.  

The extensive outer rainband during the ML and 

ET periods is of particular importance because it 

hosted numerous rotating updraft cores 

(section 3b).  The outer rainband also generated 
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heavy accumulated rainfall from 00 UTC 14 

September to 00 UTC 19 September (Fig. 5).  

Comparison of simulated and observed rainfall 

also shows agreement in the overall rain patterns, 

especially in the general locations with the 

heaviest rain totals:  the Florida Panhandle and 

southern Alabama, along the Tennessee–North 

Carolina border, and southwestern Ohio and 

Pennsylvania (Fig. 5). 

 

 

Figure 3:  a) Observed (black dashed), simulated (blue) TC track; b) observed (black dashed) and simulated 

(blue) TC intensity, defined by minimum MSL pressure at 6-h intervals beginning at the 24th forecast hour; 

c) observed (black dashed) and simulated maximum wind.  Orange line represents landfall time.  Click 

image to enlarge. 

 
 

Figure 4:  a‒c) Observed composite radar reflectivity factor (dBZ) during LF, ML and ET at 06 UTC 16 

September, 01 UTC 17 September, and 20 UTC 17 September 2004 respectively, compared to d‒f) 

simulated radar reflectivity factor (dBZ) at 0830 UTC 16 September, 0030 UTC 17 September, and 20 

UTC 17 September 2004.  Click image to enlarge. 

http://ejssm.org/ojs/public/vol14-2/fig3.png
http://ejssm.org/ojs/public/vol14-2/fig4.png
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Figure 5:  a) Observed and b) simulated accumulated rainfall (in) for Ivan.  NOAA Weather Prediction 

Center (http://www.wpc.ncep.noaa.gov/tropical/rain/ivan2004.html) provided (a).  Click image to enlarge. 

 
b.  TCT surrogates and their sensitivity to UHmax  

While a demonstrated agreement between 

simulated and observed TC-scale structure is 

important, of most relevance is the agreement 

between TCT-S and observed TCTs. The TCT 

tracks are from the TCTOR dataset (Edwards 

2010).  This dataset consists of beginning and 

ending geo-locations, beginning times, damage 

and injury information, and other pertinent 

statistics such as path width and length.  Figure 5 

shows a comparison of TCT tracks over land and 

TCT-Ss identified using the 99.5%‒99.99% 

thresholds on the 3-km domain (Table 3).  

Although there are errors in Ivan’s simulated 

track during the ET period, the spatial 

distribution of the TCT-Ss is similar to that of 

the observed TCTs.  The majority of the TCTs 

are located east of the TC track, relative to storm 

motion, until the ET period when both TCT-Ss 

and observed TCTs are found to the east and 

west of the TC track.  There are also TCT-Ss in 

locations where no tornadoes were reported, 

which we address below.  Visually, the 99.95% 

threshold produced the desired result of 

sufficient TCT-S coverage without over-

prediction (as seen when using the 99.5% 

threshold; Fig. 6b).  

To quantitatively compare the TCT-Ss to the 

observed TCTs, grid points were assigned to 

observed TCT tracks using a distance-based 

selection method in ArcGIS version 10.6.1.  

Specifically, all grid points in the 3-km domain 

that were within 3 km of an observed TCT track 

were counted as “TCT track points” (Table 5; 

Fig. 7 has a 3-km domain example).  A total of 

546 points were assigned to the observed TCT 

tracks on the 3-km domain, compared to the 

8414, 1875, 928, and 190 points from the TCT-

Ss using the 99.5%‒99.99% percentile 

thresholds (Table 3). 

This quantification alone would appear to 

support the use of the 99.95% or 99.99% 

thresholds, but confirmation of this is sought by 

a slightly different quantification, namely, the 

percentage of domain covered (PDC).  PDC is 

defined herein as the ratio of the number of 

points exceeding the UHmax threshold to the total 

number of points in the 3-km (and 1-km) 

domain(s).  The goal is to have the simulated 

PDC (Table 4) as close to or slightly greater than 

the observed PDC (Table 5), to ensure broad 

coverage of TCT-Ss without including 

extraneous or physically unimportant features.  

Consistent with the qualitative assessment, the 

99.95% threshold (UHmax of 83 m
2
 s

‒2
) for the 3-

km domain yields a composite PDC of 0.223% 

for all three periods, which compares favorably 

to the observed PDC of 0.144%.  The 99.9% 

(99.99%) threshold yields a PDC of 0.451% 

(0.046%), suggesting a TCT-S overprediction 

(underprediction) (bias scores in Table 4). 

http://www.wpc.ncep.noaa.gov/tropical/rain/ivan2004.html
http://desktop.arcgis.com/en/arcmap/latest/get-started/setup/arcgis-desktop-quick-start-guide.htm
http://ejssm.org/ojs/public/vol14-2/fig5.png
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Figure 6:  a) Observed TCT tracks (adapted from Edwards 2012) and b‒e) simulated TCT-S based on 

UHmax thresholds using the 99.5%‒99.99% values.  The observed and simulated TC track is overlaid on the 

respective plots, annotated by the period. Click image to enlarge. 

http://ejssm.org/ojs/public/vol14-2/fig6.png
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Table 4:  Same as Table 3, except bias of PDC values (%), where bias is the difference between the 

simulated and observed PDC values.  

 Period 99.50% 99.90% 99.95% 99.99% 

3-km LF,ML,ET 1.881 0.307 0.079 ‒0.098 

1-km_COMP LF 4.711 1.343 0.724   0.080 

 ML 1.947 0.306 0.129   0.005 

 ET 1.868 0.110 ‒0.029 ‒0.096 

1-km_IND LF 2.368 0.472 0.198 ‒0.038 

 ML 2.560 0.496 0.231   0.015 

 ET 3.238 0.625 0.269 ‒0.012 

           

 

Figure 7:   Example of gridpoint assignment for observed TCT tracks in the Florida Panhandle:  a) 3-km 

grid superimposed on tracks, b) points within 3 km of (and assigned to) the observed tracks. 

 

We next consider the TCT-Ss identified using 

the UHmax thresholds on 1-km domains 

(Table 3).  When using composite values (i.e., 

thresholds based on the distribution of UHmax 

pooled from the three 1-km domains used for 

each period), the TCT-Ss diagnosed using the 

99.9% threshold value of UHmax (378 m
2 

s
‒2

) 

have the best overall spatial agreement with the 

observed TCTs (Fig. 8).  Separated by period, 

the TCT-Ss diagnosed during LF and ML using 

the 99.99% and 99.95% composite threshold 

values, respectively (933 m
2 

s
‒2 

and 512 m
2 

s
‒2

; 

Fig. 8), compare best to the observations, 

whereas the TCT-Ss diagnosed during ET using 

the 99.9% value (378 m
2 

s
‒2

; Fig. 8) have the best 

qualitative comparison. 

For a quantitative assessment, we again begin 

by assigning track points to the observed TCTs, 

except now relative to grid points in each of the 
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1-km domains, using a search radius of 1 km.  

This yields 471 points for LF, 173 points for 

ML, and 498 points for ET periods (Table 5).  

We found it somewhat surprising to have nearly 

the same number of track points during the LF 

period as during the ET period, with fewer 

tornadoes reported during LF than ET.  This 

suggests that the TCTs near Ivan’s landfall, 

though mostly weak (F/EF0‒1), were longer-

tracked than the stronger (F/EF2‒3) TCTs that 

occurred during Ivan’s extratropical transition.  

The observed TCT track lengths (Table 5) 

support this statement, where the maximum track 

length during LF (ET) was 50.1 km (39.0 km), 

and the mean track length during LF (ET) was 

7.1 km (5.3 km).  

 

The PDC for the observed TCTs on the 1-km 

domains are 0.103%, 0.029%, and 0.099% for 

the LF, ML, and ET periods, respectively 

(Table 5).  The PDC for TCT-Ss on the 1-km 

grid generally agree with results from the spatial 

assessment, with the 99.99% threshold resulting 

in 0.183% and 0.034% coverage for the LF and 

ML periods, and the 99.9% threshold resulting in 

0.209% coverage for the ET period.  Unlike the 

observed TCTs, which generally increase inland, 

the TCT-Ss decrease as Ivan moves inland for all 

percentile thresholds (1km_COMP; Table 3).  

We attributed this in part to the use of a single 

UHmax threshold for all periods, versus one 

unique to each period, as discussed next.  

Given the result in Table 2 showing a general 

decrease in UHmax from LF to ET, here we use 

thresholds based on the distributions of UHmax 

within each period, and thus over each 1-km 

domain. The most favorable spatial representation 

of TCT-Ss for each period is provided by the use 

of the 99.95% thresholds (785 m
2 

s
‒2

, 417 m
2 

s
‒2

, 

and 320 m
2 

s
‒2

 for LF, ML, and ET respectively). 

The PDC values support the use of the period-

specific 99.95% thresholds for LF and ET, and 

the 99.99% thresholds for the ML period.  The 

period-specific thresholds (1-km_IND; Table 2) 

for the 1-km domains also yield an increase in 

TCT-Ss (1-km_IND; Table 3) as Ivan traverses 

inland, which was loosely shown in the TCT 

reports (Table 1).  There is a decrease in reports 

from LF to ML and an increase from ML to ET.   

Ultimately, the best threshold to use overall is 

based on the 99.95% value of UHmax, which 

provides favorable results for two of the three 

periods using the composite threshold, and all 

three periods using the individual UHmax 

threshold.  This recommendation comes despite 

the 99.9% percentile threshold showing 

favorable results for the ET period for the 1-km 

composite UHmax threshold.  These findings 

highlight the complexity of using the same 

threshold from a distribution of all the UHmax 

values verses calibrated thresholds based on the 

stage of Ivan’s inland life propagation.  This is 

evidenced by the ability to use higher individual 

thresholds for all periods, and still produce 

favorable results (Fig. 9).  Implications of these 

results could suggest that using a “one-size-fits-

all” UHmax threshold could lead to over-detection 

near landfall and under detection as a TC moves 

inland.  The authors caution however, that these 

results are unique to Ivan, and additional testing 

is needed to determine the suitability of this 

methodology to other tornadic TCs.  

 

 

Table 5:  Statistical values of observed TCT track lengths for 1-km domain by period, and track points and 

percentage of domain covered for 1-km domain by period, and 3-km domain. 

Period (domain) Max Track 
Length (km) 

Mean Track 
Length (km) 

Sum Track 
Length (km) 

Track 
Points 

PDC 

LF (1-km) 50.1 7.1 257.2 471 0.103 

ML(1-km) 22.3 5.3 150.3 173 0.029 

ET(1-km) 39.0 5.3 286.1 498 0.099 

LF,ML,ET(3km)    546 0.144 
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Figure 8:  Comparison of a‒c) the raw observed TCT tracks (black) to TCT-S (red) for the d‒f) 99.5%, g‒i) 

99.9%, j‒l) 99.95%, and m‒o) 99.99% percentile thresholds for 1-km_COMP. Click image to enlarge. 

 

 

http://ejssm.org/ojs/public/vol14-2/fig8.png
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c.  Evolution of supercell intensity, and associated 

environmental parameters, with inland 

progression of TC 

Based on Table 2 we hypothesize that the 

potentially tornadic storms have rotating-updraft 

intensities that vary with TC evolution over land.  

This is supported by a time series of maximum 

values of UH, vertical velocity, and vertical 

vorticity, over the 3-km domain, which indeed 

shows a decrease in simulated storm intensity 

over time (Fig. 10).  

An analysis of the observed convective 

environment over the three periods perhaps helps 

explains this decrease.  Note here that the 

definition of “environment” for TCTs is more 

complicated than for other tornadoes.  This is 

because the TC itself (especially its wind field) 

contributes to the environmental conditions 

supporting TCTs, yet the TC is also comprised of 

deep convective clouds that locally reduce CAPE 

and otherwise modify wind shear. 

With this caveat in mind, we collected the 

1200 UTC sounding data from two stations that 

fell within the domain of each period (LF:  

Tampa Bay, FL, TBW, and Tallahassee, FL, 

TLH; ML:  Peachtree City, GA, FFC, and 

Charleston, SC, CHS; ET:  Washington/Dulles 

International Airport, VA, IAD, and Wallops 

Island, VA, WAL).  The following 

environmental parameters were considered AGL:  

0‒1 and 0‒3-km storm- relative environmental 

helicity (SRH01 and SRH03), 0‒6-km bulk wind 

difference (BWD), mean-layer CAPE 

(MLCAPE), surface-based CAPE (SBCAPE), 

and the supercell composite parameter (SCP; 

Thompson et al. 2003) (Table 6).  We then 

normalized the parameter values using the 

maximum and minimum values of each 

parameter across all stations, and then averaged 

the normalized values to determine a 

characteristic value for each period (Fig. 11). 

 

The 1200 UTC analysis (≈6 h prior to each 

period’s temporal boundary of 18 UTC) show 

that the largest values of BWD are during the ET 

period, thus reflecting a transition to a more 

extratropical environment.  The variants of 

CAPE decrease with period and thus with TC 

evolution over land.  SCP, which depends partly 

on CAPE, also decreases with TC evolution.  

Although the SRH values do not show the same 

sort of gradual decrease, they are the lowest 

during the ET period.  This analysis suggests that 

environmental changes could explain the 

decrease in convective-cell intensity.  Future 

work will further assess these environmental 

complexities, as we seek to understand the 

transitions of (and mechanisms for) different 

convective modes and intensities as the TC 

moves inland. 

d.  Structure of supercells during LF, ML, and 

ET 

To address the aforementioned hypothesis of 

dependence of rotating-storm structure on inland 

TC evolution, we next analyzed such structure of 

various convective storms during each of the 

three periods.  Specific cells meeting both the 

composite UHmax and reflectivity criteria in the 

hourly output were identified and further 

scrutinized using 5-min output on the 1-km 

domains.  Horizontal cross sections were then 

used to document the size, intensity, and depth of 

a representative cell exhibiting a peak in UHmax 

for each period.  

The following three cells were considered:   

Cell one (C1; Fig. 12) occurred during LF at 

0850 UTC 16 September 2004, Cell two (C2; 

Fig. 13) occurred during ML at 2250 UTC 16 

September 2004, and Cell three (C3; Fig. 14) 

occurred during ET at 0025 UTC 18 September. 

C1 and C3 had tops reaching up to 13 km as 

defined by the height at which vertical velocity 

<10ms
‒1

 and SRF >20 dBZ; C2 had a storm top 

of 12 km.  All three cells had relatively deep 

rotating updraft cores, 6 km in depth for C1 and 

4 km in depth for C2‒3. The rotating updraft 

cores were identified based on overlapping 

vertical velocity and vertical vorticity maxima 

>10 m s
‒1

 and >0.01 s
‒1

 respectively. Examples 

of this overlap are shown at 1- and 3-km AGL 

(Figs. 12‒14).  All three cells also exhibited 

vertical vorticity >0.01 s
‒1

 at 500 m AGL, 

providing confidence that these storms could 

result in tornadic activity (Figs. 12‒14).  Cell C2 

had the strongest low-level rotation, with 500-m 

vertical vorticity exceeding 0.02 s
‒1

. Several 

other storms in each period (not shown) also 

exhibited maximized vertical vorticity and 

velocity over 3‒4 km AGL in depth, with some 

storm tops reaching up to 10 km AGL.  
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Figure 9:  Comparison of a‒c) observed TCT tracks to d‒f) TCT-Ss based on 1 km_COMP and g‒i) 

1 km_IND for the 99.9% percentile thresholds for each period.  Click image to enlarge. 

 
 

Figure 10:  Hourly time series of normalized max values of UH (dark blue line), vertical velocity  

(w; orange line), and vertical vorticity (ζ; gray line).  Values are normalized using the maximum value 

across all temporal and spatial domains.  Peak values of UH, w, and ζ are shown to decrease over time, 

indicating weakening of simulated convective cells as the simulated TC moves inland. 
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http://ejssm.org/ojs/public/vol14-2/fig9.png
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Table 6:  Raw environmental data values extracted from six stations defined in the text (two stations falling 

within the LF period):  TBW, TLH; ML period:  FFC, CHS; and ET period: IAD, WAL) at 1200 UTC, and 

averaged values assigned to each period (LF, ML, and ET) at 1200 UTC. 

Date/Time 
(UTC) 

Station/ 

Period 

BWD SRH01 SRH03 SBCAPE MLCAPE SCP 

15 Sept. 1200 TBW 37 134 219 1809 3578 1 

 TLH 15 222 296 1154 1854 1 

16 Sept. 1200 FFC 43 281 433 339 1505 1 

 CHS 25 92 75 1623 3149 0.19 

17 Sept. 1200 IAD 49 63 123 0 542 0.21 

 WAL 37 62 21 576 1446 0.03 

1200 LF 26 178 257.5 1481.5 2716 1 

 ML 34 186.5 254 981 2327 0.595 

 ET 43 62.5 72 288 994 0.12 

 

 

 

Figure 11:  Environmental data values normalized using feature scaling with the overall maximum and 

minimum values for each variable; values for LF (blue), ML (orange), and ET (gray) periods are defined as 

in Table 6 at 1200 UTC. 
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Figure 12:  Panned view of a) a cell from 1-km domain at 0850 UTC 16 September 2004, with a dashed 

box signifying location where horizontal cross sections were taken at:   b) 3 km, c) 1 km, and d) 500 m 

AGL (top).  SRF (dBZ) is represented by shaded contours, vertical vorticity >0.01 s
‒1

 by white dashed 

contour, and vertical velocity >10 m s
‒1

 by solid blue line.  Evidence of low-level rotation is shown in (d) 

and e) storm tops ≈13 km, indicated by height at which vertical velocity is <10 ms
‒1

 and SRF >20 dBZ. 

Click image to enlarge. 

 

 

Figure 13:  Same as Fig. 12 except 2250 UTC 16 September 2004, and e) storm top at 12 km. Click image 

to enlarge. 

http://ejssm.org/ojs/public/vol14-2/fig12.png
http://ejssm.org/ojs/public/vol14-2/fig13.png
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Figure 14:  Same as Fig. 13 except ET 0025 UTC 18 September 2004. Click image to enlarge. 

 

 

 
 

Figure 15:  Same as Fig. 12 except for the 3-km grid, and for vertical vorticity >0.005 s
‒1

, vertical velocity >5 m s
‒1

, 

and e) storm top 9 km.  Click image to enlarge. 

http://ejssm.org/ojs/public/vol14-2/fig14.png
http://ejssm.org/ojs/public/vol14-2/fig15.png
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Overall, the types of convective modes 

associated with TCTs, as identified by Edwards 

et al. (2012) (who adapted metrics from Smith et 

al.  2012), are represented in this model 

simulation. C1 has discrete supercell 

characteristics, defined as a deep rotating cell 

distinct from surrounding cells with radar echoes 

≥35 dBZ and rotational velocities ≥10 m s
‒1 

(Edwards et al. 2012).  However, C2 and C3 

represent cells with rotating cores, embedded 

within a quasilinear convective system and 

defined by continuous reflectivity >35 dBZ for a 

length ≥100 km at ≥3:1 aspect ratio (Edwards et 

al. 2012).  Additionally, each of these cells have 

reflectivity appendages with a likeness to hook 

echoes, and thus at least have some resemblance 

to the more isolated cells and cells within lines 

that occur in the Great Plains (e.g., Smith et al. 

2012).  

These cell structures are based on output on 

the 1-km grids, but a relevant question for 

operational applicability is whether these 

structures would also be identifiable on the 

relatively coarser grids used in operational 

CAMs.  Therefore, in Fig. 15, we show C1 as 

realized on the 3-km grid from hourly output.  

Cell C1 on the 3-km grid has the same basic 

features as on the 1-km grid (Fig. 12).  The 

suggestion of this analysis is that potentially 

tornadic cells in TCs are better resolved with  

1-km grid spacings, but such cells can still be 

represented on 3-km grids. 

4.  Conclusions 

 

This study used high-resolution real-data 

WRF simulations of Hurricane Ivan to document 

the existence and structure of potentially tornadic 

supercells within tropical cyclone (TC) 

rainbands.   The simulated TC track and intensity 

matched well with observations post-landfall, 

and the simulated TC structure closely replicated 

the observed rainbands and overall shape.  TC 

tornado surrogates (TCT-Ss) were identified and 

calibrated using thresholds based on percentile 

values of maximum updraft helicity (UHmax) and 

simulated radar reflectivity.   

Although the magnitude of UHmax generally 

decreased as the simulated TC moved inland, 

sensitivity testing revealed that a threshold based 

on the 99.95% percentile value of UHmax 

achieved optimal TCT-S coverage, and 

agreement with observed TCT tracks, on 

domains with 3-km and 1-km grid spacings.  

These values include:  83 m
2 

s
‒2

 for the 3-km 

domain, 512 m
2 

s
‒2

 for the 1-km composite 

domain, 785, 417, and 320 m
2 

s
‒2

 for the 

individual period specific, LF, ML, and ET 1-km 

domains, respectively.  These values are specific 

to Ivan, and further testing is needed to 

determine the applicability of the TCT-S 

methodology to other TCs.  Nonetheless, the 

complexity in choosing a proper threshold was 

revealed through the sensitivity tests.  Three cells 

were identified at three different stages of the TC 

inland evolution and had hook-like appendages 

and other characteristics of supercells found in 

the Great Plains and elsewhere around the world.  

The cells produced storm tops of 12‒13 km 

AGL, with rotating cores with depths of 4 km 

AGL. 

This study highlights UHmax in a CAM as a 

potentially useful tool in forecasting TCT 

occurrence.  Although improvement in storm-

scale forecasts, using a higher resolution domain, 

agrees with Schwartz et al. (2017), the results 

from the 3-km grid show promise for CAM 

applications in operational settings (Fig. 13).  

Our future work will include simulations of 

recent TC events.  We will also explore 

sensitivities to model physics, including 

exploration of the Asymmetric Convective 

Model version 2 (Cohen et al. 2017) for 

parameterizing boundary layer processes.  

Finally, we will explore the applicability of 

Doppler-radar-derived rotation tracks for TCT 

identification (as suggested by Carroll-Smith 

2018) and CAM evaluation (as in, e.g., Dawson 

et al. 2017). 
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REVIEWER COMMENTS 

 

[Authors’ responses in blue italics.] 

 

REVIEWER A (Daniel T. Dawson): 

 

Initial Review: 

 

Recommendation:  Accept with major revisions. 

 

Synopsis:  This study describes analyses of CAM simulations of rotating convective storms in Hurricane 

Ivan (2004), focusing on verification with observed tornado occurrences as a first step toward assessing the 

potential for CAMs for TC tornado prediction.  Overall, the paper is well-motivated and –organized, and 

addresses an important aspect of tropical cyclone hazards that has received relatively little attention from a 

numerical prediction standpoint, as compared with studies that focus on track, overall intensity, and rainfall 

hazards from TCs.  My overall assessment of the study is that it has the potential to be an important 

contribution to this area, but requires major revisions before being accepted for publication.  

 

My biggest concern has to do with the experiment design and analyses not adequately supporting the idea 

that changes in the structure of Ivan as it moved inland and made its extratropical transition are responsible 

for the temporal variation in UHmax thresholds that are required to get the best “match” with observations. 

This concern is tied up with other related concerns regarding a lack of clarity as to what sorts of structural 

changes (both on the larger TC scale and on the scale of the convective storms themselves) are important 

and how these should be diagnosed.  Also, some of the description of methodology for both the experiment 

design and analyses could be improved.  Overall, I think that these concerns could be adequately addressed 

(or contended, as the case may be) by the authors through revisions over a relatively short time period, and 

thus my recommendation is for acceptance pending major revisions.  

 

Substantive/Major Comments:  An important conclusion of your study seems to be that the proper choice 

of percentile threshold for identifying TCTS that match well with observed radar-derived rotation tracks 

and/or actual observed tornado tracks depends on the period over which the data is collected, corresponding 

to different intensities of rotating updrafts that themselves depend on different stages in the large-scale 

structural evolution of Ivan.  I have two basic thoughts about this.  First, I don’t feel as if you have 

convincingly shown that this dependence on period is directly mappable to these structural changes, either 

on the storm-scale or the TC scale.  The results of your study seem at least somewhat consistent with this, 

but 1) some physical justification or explanation for the computed trend in UHmax thresholds in terms of 

either the TC-scale or storm-scale changes should be provided, and 2) other possible reasons should be 

ruled out, including the possibility that the dependence is spurious (i.e., owing to limited statistics).  One 

suggestion I would have to test this would be to choose random subperiods that don’t correspond neatly to 

the three stages chosen in your study, to see if comparable changes in the “best” threshold occur for these 

as well.  Another possibility is to perform an ensemble of simulations and assess the variability across the 

ensemble (though care would have to be taken to ensure that the periods in question had similar ensemble 

spread, which would require careful experiment design and different initialization periods).  Still another is 

to repeat the experiment on other landfalling tornado-producing TCs, (though this may be too much to ask 

for the current study!).  

 

Second, it seems to me that there are many other potential dependencies that aren’t accounted for or 

discussed in this paper.  One would be the choice of physics packages, particularly the microphysics 

scheme, which, among other things, affects the appropriateness of the chosen threshold of reflectivity for 

the TCTS algorithm (see more on this below).  While clearly an exhaustive study of the possible 

sensitivities is too much to ask for, I think this study would benefit from at least a more thorough 

discussion of these possibilities and preferably one or more sensitivity experiments along the above or 

similar lines. 

 

We appreciate your comments and suggestions.  Physical justification to explain the trends in the UHmax 

values are beyond the scope of this research and would be best explored in a separate study.  We feel this 
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study highlights the complexity of using a “one-size fits all” threshold, while shedding light on the need for 

more research into the physical mechanisms governing tornadic rotating storms as the TC moves inland.  

We agree that repeating this experiment on other landfalling tornado-producing TCs would be desirable, 

however as you mentioned, that is beyond the capabilities of the current study.  Incorporating more cases 

will be the focus of future work. 

 

We conducted sensitivity experiments in an adjacent study using the YSU PBL and the WSM6 MP schemes 

on one two-way nested domain at 9 and 3 km.  Results showed that TCT surrogate generation was most 

sensitive to the choice of PBL scheme, even though the WSM6 experiments had stronger rotating updrafts, 

owing in part to stronger updraft speeds.  A more thorough examination of these sensitivities is needed and 

therefore we did not include the results in this study at this time. 

 

It’s not clear to me what conclusion should be drawn from the analysis of the convective mode during the 

three periods chosen (i.e., section 3c).  You initially state that you did so to “address the aforementioned 

hypothesis of a dependence of rotating-storm structure on inland TC evolution”, yet the evidence shown for 

this dependence strikes me as relatively weak, at least from the results shown here. Indeed, you don’t seem 

to make a claim one way or the other about how your hypothesis fares, other than to suggest that the mode 

in the first period is more discrete (but see my comment below).  Choosing just three cells from each period 

has limited usefulness (unless care has been taken to ensure representativeness), as one doesn’t know if the 

differences are robust or merely due to chance.  Moreover, from just the horizontal cross-section plots 

alone, one can at best derive rough qualitative differences.  

 

To really get at the question of whether there is a dependence on inland TC evolution requires additional 

quantitative analyses (i.e., such as trends in updraft and mesocyclone strength, depth, areal coverage, etc., 

not to mention analyses of environmental characteristics such as CAPE and bulk shear).  It seems to me 

that there is potential here, with a modest amount of additional effort, to greatly improve the analyses in 

this section and thus to better vet this hypothesis.  The results could also feed back to your UHmax threshold 

analysis in the previous section.  Along these lines, it occurs to me upon looking back at Table 2, that there 

is a clear decrease in the UHmax values for each of the percentiles on the 1-km domain across the three 

periods, which could easily be unpacked in more detail in this context.  

 

We agree, a quantitative analysis of storm scale and TC scale characteristics would improve this analysis.  

However, what we’ve found in testing this so far is that doing this analysis presents a couple of issues.  1) 

Capturing pre-convective values of environmental variables such as CAPE as often done for mesoanalysis 

of severe weather from non-tropical origins, is complicated.  We struggle with how to resolve wanting to 

capture the pre-convective/pre-TC environment while also acknowledging that the TC environment 

provides the ingredients that lead to tornadic activity.  2) The second issue that we were working to resolve 

is having to average environmental variables over such a large area.  It seems that carrying out the 

analysis you mentioned, would require a total re-work of the methodology, shifting the focus instead on one 

cell from each period. 

 

We included a trend analysis below of peak values of UH from the 3-km grid analysis.  Just as expected, 

peak values of UH, vertical vorticity and velocity, decrease as the storm moves inland.  

 

[Editor’s Note:  What became Fig. 10 in the final manuscript was shown here.  See Fig. 10 for illustration.] 

 

An objective analysis of mesocyclone depth and storm top (defined here as the height above which vertical 

velocity <10 ms
−1

), show a similar trend, though not as apparent. 
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Methodology, section a:  Some more detail about the initialization of the model simulations is needed.  Did 

you perform a single initialization of the 9- and 3-km grids, and only updated the boundary conditions 

thereafter for the entire 5-day period?  Or were multiple initializations made for each stage of the event 

(i.e., those corresponding to the three 1-km domains)?  (I know you say that the 9- and 3-km grids were 

integrated for the entire 5-day period, but what’s not clear is if there was any stopping and restarting with 

fresh FNL analysis during this period).  This has implications for how to interpret the second and third (ML 

and ET) periods, since if only a single initialization is used, the accuracy of the entire simulation would 

presumably suffer as one gets further from the initialization time.  On a related note, how much time was 

given for the “spin-up” of the simulation prior to the analysis period for the landfall stage? 

 

The authors made a single initialization for the 9- and 3-km grids beginning at 0000 UTC 14 September, 

corresponding to roughly 48 h prior to Ivan making landfall, 0600 UTC 16 September.  Integrations of the 

different 1-km were done using the boundary conditions from the 9- and 3-km domains. 

 

Methodology, section b:  First, regarding the use of UH between 2 and 5 km AGL:  since TCTs typically 

form from relatively low-topped convection (with mesocyclone depths ~4 km as described in the 

introduction), it seems odd to choose a range of heights that was developed to diagnose mid-level 

mesocyclones in typical continental supercell environments.  What was the rationale for this decision?  

Second, while you state that a TCTS is defined based on the joint exceedance of a UH and Z threshold, it’s 

not clear how you use this exceedance information to diagnose a given TCTS.  Is there some feature-

tracking methodology that is also applied, or is it done grid point-by-grid point?  Presumably your 

methodology is based on that of Dawson et al. (2017) (which, by the way, is missing from the reference 

list), but it would be very helpful if you briefly described it here, as well, given its central importance to 

your study. 

 

The TCTS are defined by grid point exceedances of a defined threshold of UH and simulated radar 

reflectivity.  Feature tracking is not a part of the methodology at this time.  

 

Methodology, section c:  The use of the same dBZ threshold (30 dBZ) for the rotation tracks derived from 

the radar data as that for the model TCTS algorithm strikes me as potentially problematic, because you are 

then (apparently) not accounting for potentially large systematic biases between the simulated and observed 

reflectivity.  Evidence for this large bias comes from Fig. 3, where at least as far as composite reflectivity 
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goes, the simulated reflectivity from the Thompson scheme is systematically quite a bit higher than the 

observed over large portions of the storm.  I strongly recommend considering calculating and correcting in 

some way for this bias when attempting to compare the rotation tracks and TCTS.  Also, this brings up 

another question: is the reflectivity threshold used based on the composite reflectivity, or the lowest 

elevation, or some other elevation? 

 

Thank you, you make a very good point, however this analysis would not be feasible with the present study.  

Bias correction of the simulated reflectivity would require a larger sample of simulated and observed 

values to understand which bias characteristics of the model needs to be adjusted. You also make a good 

point regarding the Thompson microphysics scheme; however, the authors believe the resolution and other 

physics parameterizations would factor into determining the bias characteristics of these specific forecasts.  

In addition, bias correction would not be feasible for this study given the limited radar observations 

available for this case.  If you recall, the authors were limited to using rotation tracks data for the ET 

period, or last 24-h period.  Given these reasons, an appropriate bias correction would not be possible for 

this case.  

 

For the rotation tracks, the reflectivity threshold is applied along radar elevation angles throughout the 

0−3-km layer.  The raw radar data is saved on different elevation angles, and the azimuthal shear is 

computed along those elevation angles. The vertical max (i.e., composite) is then taken to get the maximum 

value in the 0−3-km layer. 

 

The reflectivity threshold for the TCTS analysis is based on the lowest model level.  

 

Results:  regarding the assigning of grid points to TCT tracks: this is more of a suggestion, but what about 

making a figure showing the results of this distance-based selection method for each of the domains as 

compared with the simulated TCTS track coverage? 

 

Please see Fig. 6. 

 

Results, regarding the PDC calculation.  Another suggestion: instead of the raw values of the simulated 

PDCs, why not calculate the bias scores between the various simulated PDCs and the observed PDCs and 

show those directly in Table 4 (and Table 5 for the 1-km results)? 

 

The authors calculated the PDC value and updated the table accordingly.  Table 5 consists of the observed 

PDC and was not updated with bias calculations. 

 

Results, section c:  how representative were the storms chosen in each of the three periods to the other 

rotating storms in their respective periods?  Also, how did the overall structure of these storms compare to 

their observed counterparts?  I’m thinking particularly of the mesocyclone depth and overall storm depth. 

This has implications for the choice of the 2‒5-km layer for the UH calculations mentioned above. 

 

The authors chose three cells based on the criteria that they had a maximum value of UH for the 5min 

output on the across the 1-km domain, or hourly output on the 3-km domain.   In addition, the cells had to 

meet the criteria of overlapping vertical velocity and vorticity maxima greater than 10 m s
‒1

 and 0.01 s
‒1

 

respectively, and low-level vertical vorticity >0.01 s
‒1

.  Many of the storms met the maxima in vertical 

vorticity and vertical velocity but did not meet the low-level vertical vorticity criteria.  These cells were 

also much smaller and less structured than the representative cell.  They are also situated in clusters within 

the distant rainbands.  

 

Results, section c:  description of convective modes.  It’s not obvious to me that there is a substantial 

difference in the convective mode between cell C1 on the one hand, and cells C2 and C3 on the other.  

They all appear to be in relatively close proximity to their neighbors that are (more-or-less) arranged in a 

line.  Could you elaborate on the reasons for your claim?  It’s also worth pointing out that while it’s true 

that supercells in the Great Plains tend to be more isolated, they do still come in a variety of modes, and 

there are many examples of at least as close spacing and similar linear relationship as seen here (see, e.g., 

Smith et al. 2012).  
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Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for 

significant severe thunderstorms in the contiguous United States. Part I: Storm classification and 

climatology. Wea. Forecasting, 27, 1114–1135. 

 

Thank you for this reference, the text has been updated accordingly.  Regarding the cell’s convective 

modes, the authors can see how there is ambiguity in determining which cell fell under a certain category.  

We objectively determined the convective mode, based on the cell’s position relative to other cells around 

it, and using Edwards et al. 2012, Part III of the referenced series as guidance. 

 

Edwards, R., A. R. Dean, R. L. Thompson, B.T. Smith, 2012: Convective modes for significant severe 

thunderstorms in the contiguous United States. Part III: Tropical cyclone tornadoes. Wea. Forecasting, 

27, 1507‒1519. 

 

[Minor comments omitted...] 

 

Second Review: 

 

Reviewer recommendation:  Accept with major revisions.  

 

Synopsis:  The authors have improved the manuscript in response to my comments, and overall I think it is 

closer to publication.  However, based on a careful reading of the revised paper as well as the responses to 

my (and the other reviewers) original comments, I think there are still a lot of unanswered questions and 

potentially problematic issues that still need to be answered and addressed, and I have described these 

below.   

 

Substantive/Major Comments:  I see that the authors removed the discussion of how the observed TCTs 

were derived from an analysis of radar-based rotation tracks as a response to one of the other reviewers’ 

criticisms, but I admit now to being rather confused.  In my previous review I was laboring under the 

(evidently mistaken) assumption that the “observed TCTs” were in fact those derived from the authors 

rotation track analyses, but now that those have been removed, it’s not at all obvious to me now where the 

observed TCT data are coming from.  Is it from Storm Data or other storm reports?  The only clue I could 

find is in the caption to Fig. 6 where it is stated that the tracks are adapted from Edwards (2012).  Digging 

into this paper, it looks like the tracks may ultimately come from SPCs “TCTOR” dataset.  Is this the case?  

Either way, the origin and basic characteristics (i.e., does it consist of start and end points, etc.) of the TCT 

track data the authors use for verification needs to be clearly explained in the paper.  

 

The tracks are indeed from the SPCs TCTOR dataset and the text has been updated to reflect this 

information, including basic characteristics of the TCT track data. 

 

In response to my previous major comment #1, the authors argue that “physical justification to explain the 

trends in the UHmax values are beyond the scope of this research and would be best explored in a separate 

study.”  I think this is fine as far as it goes, but the current manuscript still claims that “Implications of 

these results could suggest that using a ‘one-size-fits-all’ UHmax threshold could lead to over detection 

near landfall and under detection as a TC moves inland.”  My ongoing concern is that this statement cries 

out for at least some expansion by:  1) giving a plausible physical explanation based on the analyses the 

authors have already performed (see my second comment below) or could be performed with modest 

additional effort, and 2) emphasizing that this may only apply to Ivan.  I realize that the latter point is made 

later on in the conclusions, but I strongly suggest that it also be emphasized in the text where the statement 

is first made.  Also, the authors discuss some sensitivity experiments that they performed but elected to not 

include the results of in the current paper.  I understand and agree that a more thorough analysis could be 

left for future work, but why not at least mention that some of these experiments have already been 

performed and briefly discuss the preliminary results in the Summary section? 

 

The authors added a statement in section 2a addressing the sensitivity experiments for physical parameters 

conducted in a previous study, as well as experiments testing the optimal level of UH max in section 2b 

paragraph 1.   We also emphasized the results are unique to Ivan and can be applicable to storms like Ivan. 



CARROLL-SMITH ET AL.  17 April 2019 

27 

 

In regard to the authors’ response to my previous major comment #2 and associated revisions:  First, thanks 

for your explanation regarding the evolution of environment variables; I understand that this is more 

complicated than it seems on the surface, and that there really isn’t a good way to separate the “mesoscale 

pre-convective” (if by this we mean before the TC arrives on the scene) from the TC-induced mesoscale 

environment (with likely already ongoing convection).  In fact, it was the latter sense I had in mind when I 

made my original comment, but admittedly, I wasn’t clear on this point.  That is, by “environment” I meant 

the mesoscale circulation associated with TC, which necessarily includes the effects of the convection itself 

to some degree (at least its upscale influences).  I think we can agree that from this perspective, the 

“preconvective” environment in the above sense may have limited relevance to the subsequent tornadic 

activity.  Nevertheless, it seems that it should still be possible to calculate relevant environmental 

parameters on the mesoscale directly from the model fields (with suitable filtering) and/or leverage the SPC 

mesoanalysis (or some other comparable analysis dataset) fields to help shed light on some of these issues.  

 

Unfortunately, the SPC mesoanalysis is unavailable for 2004, when Ivan occurred, however, the authors 

assessed the TC-induced mesoscale environment using SPC observed soundings.  Please see results in 

section 3c. 

 

But, leaving aside the question of analyzing environmental characteristics, the authors have provided some 

interesting plots of trends of peak UH/w/low-level  in their previous response that I think would go a long 

way toward improving the paper by giving at least some context to (e.g.) the finding that using the “‘one-

size-fits-all’ UHmax threshold could lead to over detection near landfall and under detection as a TC moves 

inland”.  That is, the finding that the period specific thresholds for a given percentile decrease for each 

subsequent period seems to be consistent with the finding that the overall intensity of the simulated storms 

decreases for each subsequent period (as shown in the figures given in the authors’ previous response).  In 

short, I strongly recommend including these figures (or something like them) in the manuscript itself, along 

with appropriate description of their implications (whether or not the authors agree with my assessment). 

 

These results have been added to section 3c. 

 

Is it safe to say now that the three simulated supercells chosen for further analysis are in fact the cells with 

the strongest rotation during their respective periods?  If so, I think this should be described clearly in the 

manuscript.  In section 3d, the authors state that “Horizontal cross sections are then used to document the 

size, intensity, and depth of a representative cell exhibiting a peak in UHmax for each period” (emphasis 

mine).  In my mind, the strongest cell (or at least the one with the strongest rotation) is (almost by 

definition) not representative of its peers.  Can the authors clarify this? 

 

The cells chosen were not the most intensely rotating cells within each period, although they were among 

the hourly maximum and 5-min maximum UH values within that period and met the threshold requirements 

of overlapping contours of vertical vorticity >0.01 s
−1

, vertical velocity >10 m s
−1

, and/or low low-level 

(500-m) vertical vorticity >0.01 s
−1

.  The cells with the max value of UH, however, did not meet the low-

level vertical vorticity requirement. 

 

What is meant by an “over-representation in TCT-S occurrence”?  How was this determined? 

 

Over-representation in TCT-S occurrence is indicated quantitatively by the percentage of domain covered 

for a particularly temporal and spatial domain.  The text has been updated accordingly and directs viewers 

to the section detailing the calculations of the percentage of domain covered. 

 

[Minor comments omitted...] 
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REVIEWER B (Ariel E. Cohen): 
 

Initial Review 
 

Reviewer recommendation:  Accept with major revisions. 
 

Overall summary:  This submission provides an excellent first start to the application of simulated 

convective attributes from convection-allowing model guidance to assessing the potential for tornadoes to 

accompany tropical cyclones.  I commend the authors for their very thorough investigation and use of 

integrated datasets to formulate thresholds from numerical guidance to assess tornado potential in a 

repeatable manner.  My overall concern lies with the potential implication of more widespread applicability 

of this work to a larger sample of tropical cyclones.  The inland thermodynamic profile with Ivan was 

characterized by a rather substantial amount of buoyancy, potentially unrepresentative of a broader 

distribution of tropical cyclones that also produce tornadoes—perhaps with less buoyancy.  This calls to 

question the global application of the UH thresholds nominally stated in this work—and even the layer of 

computed UH—especially given the characteristically low-RCAPE (reversible CAPE; see Edwards and 

Thompson’s paper on RCAPE) part of the parameter space that many tropical-cyclone tornadoes occupy.  

While the authors clearly suggest that their work effectively has motivated additional research and future 

work to investigate some of their findings in more detail, I believe it is very important that findings from 

this work—in its present form—be very specifically referred to as emanating from a single case study and 

may not be applicable to many other systems.  Unique characteristics of the buoyancy distribution for this 

system may render findings only applicable to this system, and this system alone, without additional 

investigation.  Nevertheless, the authors have laid out a fantastic first approach to CAM storm-attribute 

evaluation for tropical cyclone tornado threat assessment—undeniably a novel effort well deserving of 

incorporation into meteorological literature. 
 

Major Comments:  Because the typical TCT is characterized by a convective-inflow environment marked 

by limited RCAPE, and often muted traditional CAPE, in association with the deep moist-neutral thermal 

profile, it is often the shallowest layers of buoyancy and related vorticity stretching that are critical to the 

amplification of surface-layer vorticity supporting tornadoes.  As a result, I am greatly concerned with 

widespread use of the 2‒5-km layer for assessing updraft helicity for TCTS identification. 
 

Sobash et al. (2016) highlight two subsets of simulated convective elements:  one with substantial 1-km 

relative vorticity, and another with ratios of 0‒3-km UH to 2‒5-km UH above unity.  In the case of the first 

subset, Sobash et al. (2016) suggest a linear relationship between 2‒5-km UH and 0‒3-km UH, and this 

established relationship would support the use of either layer of UH.  However, this assumes substantial 1-

km relative vorticity, which has not been established by the authors of the present work as being 

characteristic of simulated environments producing TCTSs—for Ivan or other TCs. 
 

Now, it is entirely possible that the usage of 2‒5-km UH can be justified for the buoyant sector of—

specifically—Ivan.  Observed soundings at Dulles and Wallops Island at 00Z peripheral to Ivan (link) 

indicated MLCAPE upwards of 2000‒3000 J kg
‒1

 in association with the buoyant convective inflow.  This 

profile will have the potential to support a deeper rotating updraft, making 2‒5-km UH more relevant as a 

proxy for tornado potential, than a Tropical Cyclone Harvey-like case (SPC Mesoanalysis MLCAPE:  

link).  As a result, it may be coincidental that the 2‒5-km UH is found to be relevant for adequately 

identifying TCTSs for Ivan, especially if these TCTSs are associated with larger 1-km relative vorticity 

supporting the correlation of 0‒3-km UH to 2‒5-km UH—consistent with the first subset identified by 

Sobash et al. (2016).  Indeed, Sobash et al. (2016) indicate surface-based CAPE associated with this first 

subset as being around 1600 J kg
‒1

 larger than that associated with the second subset. 
 

So, if the more global distribution of TCTs—less representative of the greater-buoyancy and prolific-

tornado production for Ivan—were characterized by Sobash et al. (2016)’s second subset identified, then 

the linear relationship between 0‒3-km and 2‒5-km UH no longer holds the way it does for the first subset.  

This would be substantiated by the lower buoyancy characteristic of the second subset.  In this second 

subset, higher ratios of 0‒3-km UH to 2‒5-km UH are asymmetrically (little change in 1-km relative 

vorticity) explained by lower magnitudes of 2‒5-km UH.  As a result, these cases—perhaps more typical 

TCT-associated cases where comparatively shallower circulations and associated dynamic amplification of 

http://www.spc.noaa.gov/publications/edwards/SLS-rcape.pdf
http://www.spc.noaa.gov/publications/edwards/SLS-rcape.pdf
https://journals.ametsoc.org/doi/pdf/10.1175/WAF-D-16-0073.1
http://www.spc.noaa.gov/exper/archive/event.php?date=20040917
http://www.spc.noaa.gov/exper/ma_archive/images_s4/20170825/18_mlcp.gif
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near-surface vorticity support tornado potential—may require separate investigation of UH in the lowest 3 

km.  In other words, variability of 2‒5-km UH in the typical TC regime of weaker buoyancy may not 

necessarily explain the potentially critical variability of 0‒3-km UH governing TCT potential.  Using 2‒5-

km UH may work fine for Ivan, but 0‒3-km UH may be much more appropriate for systems bearing less 

midlevel buoyancy. 
 

Because of the aforementioned notions, I’d like to how this analysis changes for the use of 0‒3-km UH in 

place of 2‒5-km UH.  I realize that this may potentially be less of an issue for Ivan—in which case that 

needs to be clearly stated.  It needs to be clearly stated that this layer of UH analysis may be tied to the 

unique buoyancy distribution of Ivan, that a shallower layer of UH may be more relevant in other cases, 

and because of the deeper/stronger buoyancy characteristic of Ivan the resulting magnitudes of 2‒5-km UH 

may potentially be too large if they were sought to be accurately applied to other systems.  However, 

ultimately, I’d prefer to see how the analysis of UH in the 0‒3-km layer would appear. 

 

The authors are appreciative of your thorough explanation of the importance of assessing low level 0‒3 km 

UH as a proxy for tornadic supercells, and the correlation of 2‒5-km UH pending substantial 1-km relative 

vorticity.  The authors put in a substantial amount of time and effort to add 0‒3 km and 1‒4 km to the WRF 

NWP diagnostics, to address this comment, and conducted an analysis on the 3-km domain to save 

computing resources. 
 

As you suggested, coincidentally due to the buoyancy characteristics of Ivan being deeper and stronger 

than that of the “classic” tornado-producing tropical cyclones, the authors found that the magnitudes of 

UH in the 2‒5-km layer better represented TCT surrogates in this study.  The 1‒4 km layer of UH showed 

negligible differences in TCT surrogate generation compared to the 2‒5-km layer.  The 0‒3- km [layer] 

however, produced a strong positive bias, suggesting the thresholds generated from the statistics for this 

layer of UH were too low, resulting in an overproduction of TCT surrogates.  The authors acknowledge 

that the results from this study are anomalous to what is typically found in other tornado producing TCs 

and will temper the text accordingly.  

 

Please see figures and table below for results from this analysis. 
 

 

 

 

 

 

 

[Minor comments omitted...] 

 

Second Review: 

 

 

 

 
 

UHmax level Peak UH (m
2 

s
‒2

) 
99.95% 

threshold value 
TCTS 

PDC bias (%) 
(PDCsim−PDCobs) 

2‒5 km 298.24 94.37 1106 0.122 

1‒4 km 241.74 97.23 1076 0.115 

0‒3 km 188.06 48.76 3399 0.674 
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***Keep in mind these values are based on simulations using model runs from a two-way nested grid with 

9-km parent grid and 3-km nest; they will not be identical to the values listed in the manuscript since there 

is no 1-km grid feeding back into it. 

 

The choice of the MYJ PBL parameterization scheme is somewhat concerning owing to its local-type 

configuration.  The effects of turbulent kinetic energy generated by the vertical shear of the horizontal wind 

can be under-represented in this type of parameterization yet can be very important for their influence in 

low-CAPE, high-shear severe-thunderstorm environments.  Please reference Cohen et al. (2015) for 

additional details.  Cohen et al. (2017) especially highlight the importance of using a hybrid PBL 

parameterization scheme in low-CAPE, high-shear southeast U.S. tornado environments—one that 

simultaneously incorporates the non-local effects related to shear-produced turbulence and the local effects 

from limited-instability-related muting of this turbulence.  Granted, these works were developed for the 

Southeast U.S. low-CAPE, high-shear regimes and not specifically for TCTs.  Regardless, there are 

ultimately elements of similarity between these environments.  Ideally, it would be appropriate to 

determine whether another PBL parameterization scheme [i.e., one of the hybrid variety such as the 

Asymmetric Convective Model, version 2 or any of its variants as Cohen et al. (2017) describe] may result 

in a more realistic environment.  After all, the simulated convective activity and related foundation upon 

which proxy thresholds are built can be undermined by a poorly simulated environment.  However, at the 

very least, acknowledgement of these concerns needs to be addressed in the context of model configuration. 

 

The authors fully acknowledge your recommendation; however, priority was given to the reviewer’s 

comments addressing the ideal level of UH to analyze, to achieve optimal results for Ivan.  The text will be 

updated, reflecting the need to address such concerns in future studies using CAMs to model tropical 

cyclone tornadoes. 

 

There should be mention added, within the introduction, that there indeed exists previous research on 

convection-allowing-model guidance regarding thermodynamic/kinematic environments that are similar to 

those favoring severe thunderstorms/tornadoes with TCs.  The tornado potential is ultimately governed by 

the convective environment in which their parent storms evolve, which can be brought about by multiple 

larger-scale pattern regimes.  That is, while the authors’ work is unique to TCT environments, similar 

environments have been investigated from a convection-allowing-model perspective—specifically low-

CAPE, high-shear southeast U.S. tornado environments.  Both Cohen et al. (2015) and Cohen et al. (2017) 

are very relevant in terms of simulating foundational environmental conditions and resulting convective 

morphologies in somewhat-similar-type regimes. 

 

Thank you for providing this reference, the text has been updated accordingly. 

 

There needs to be much clearer distinction made between radar-driven TCTs and actual-reported TCTs.  

Whether this is accomplished through a “proxy/P” prefix on the TCTs for the non-reported TCTs, or a 

“reported/R” prefix on the TCTs for reported TCTs, there needs to be much more deliberate stating of what 

corresponds to reported tornadoes and what corresponds to proxy tornadoes.  I completely agree with the 

discussion regarding problems in the tornado database for consistent evaluation of tornadoes and 

corresponding verification.  However, in Fig. 5, when actual tornadoes are plotted and used for comparison 

from Edwards (2012), there is an inconsistent application of the “actual” dataset—whether it’s reported or 

proxy.  The comparison dataset needs to be consistent throughout the manuscript, or it needs to be much 

more clearly stated when deviations from that dataset are made. 

 

We apologize for the ambiguity, TCT surrogates are now annotated as TCT-S. The text was also edited to 

emphasis what is observed and surrogate (proxies). 

 

Across the board from the abstract through the conclusions—and for the reasons cited in comment 1 and in 

the overall summary—there needs to be much more deliberate clarification that the findings of this study 

apply specifically to Ivan.  Multiple TCs representing a variety of environments need to be investigated in 

order to solidify UH thresholds for assessing tornado potential from convection-allowing models.  Ideally, 

it would be best to apply the UH thresholds found from Ivan to another system to see how they perform for 

a different TC—as a part of an attempt to perform an independent evaluation/validation.  The use of 2‒5-

https://journals.ametsoc.org/doi/abs/10.1175/WAF-D-14-00105.1
https://journals.ametsoc.org/doi/abs/10.1175/WAF-D-16-0193.1
http://ejssm.org/ojs/index.php/ejssm/article/view/97
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km UH alone, let alone the exact magnitudes in that layer, may result in a substantially different/reduced 

probability of detection for tornadoes for a TC bearing much less buoyancy.  However, if testing on another 

system were not feasible, deliberate mention of the single-case-study limitations needs to be more clearly 

and frequently cited throughout this work. 

 

The 2‒5-km UH may not be the best metric to capture tornadic storms in cases unlike that of Ivan.  Given 

that testing on another case is not feasible at this time, the authors have updated the text to stress the 

uniqueness of this variable to Ivan. 

 

[Minor comments omitted...] 

 

Second Review: 

 

Reviewer recommendation:  Accept with minor revision. 

 

General comment:  I want to commend the authors for doing a truly fantastic job addressing my 

previously mentioned concerns.  I very much appreciate their detailed evaluation of the sensitivities of 

layer choice for UH and description in the document.  This is an excellent contribution, and I feel that the 

authors qualified their previous statements in a respectable manner. 

 

I only have a few relatively minor comments, and I believe that the manuscript is very close to being ready 

for publication. 

 

[Editor’s Note:  One comment appeared substantive enough for inclusion in the review record, below.] 

 

In vertically sheared environments, convection is typically tilted.  So, is the weakness in UH offering value 

for supercell threat assessment with Katrina mainly associated with the convective-scale upward 

accelerations being generally shallow? 

 

Green et al. (2011) does not elaborate on this assertion other than to say UH was an insufficient metric to 

identify supercells, given the cells in Katrina’s rainbands were “tilted and shallow”.  However, given your 

assessment of convective environments and general knowledge of TC supercells and their “miniature” 

characterization, the cells were likely too shallow.  It is also possible Green et al. (2011) used the standard 

UH measured between 2 and 5 km verses using low level 0−3 km UH. Again, there is not enough 

discussion to give a definitive answer. 

 

 [Minor comments omitted...] 

 

 

REVIEWER C (Matthew D. Eastin): 

 

Initial Review: 

 

Recommendation: Accept with major revisions. 

Summary: A high-resolution WRF simulation of Hurricane Ivan (2004) is used to evaluate the use of 

updraft helicity (UH) maxima to identify potential tropical cyclone tornadoes (TCTs) for application in a 

short-term prognostic setting. Overall, the study is well-motivated and -written, but suffers from poor 

methods and validation of the overall TC structure (especially the low-level outer rainband wind fields) and 

representative outer rainband supercells (e.g., storm tops, mesocyclone depth, longevity, etc.).  Moreover, 

the results are confused by counting each grid point that exhibits extreme UH values (at each model output 

time) as a unique TCT, rather than identifying and tracking spatially coherent TCTs over sequential output 

times (a method more similar to reality).  Recommendations of how to address my concerns are provided 

below. 
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1. Your validation and documentation of Ivan’s overall intensity and structure, as well as individually 

simulated outer rainband supercells could be significantly improved: 

a.  Given your focus on supercells and tornadoes, combined with the well-known role that low-level 

vertical wind shear plays in supercell/tornado evolution, greater emphasis should be placed on 

validating the simulated three-dimensional wind field.  For example, the simulated offshore surface 

winds could be validated against observational HWIND analyses, while the simulated onshore winds 

could be validated against surface station and rawinsonde observations.  Such validation would be more 

constructive than the qualitative comparison of observed and simulated radar reflectivity for overall 

storm “shape” and the simple “presence” of an outer rainband east of center.  Moreover, I do not find 

any value in comparing the overall storm total precipitation—Fig. 4 could be replaced with a wind field 

comparison/validation. 

If you wish to retain the validation using reflectivity, provide more quantitative results.  For example, 

the total area occupied by dBZ >30 could be computed for both the overall storm and target outer 

rainband from both the observational composites and simulations.  Lastly, any figure depicting the 

observed and simulated reflectivity fields (e.g., Fig. 3) should have the same color scale.  

Thank you for your suggestion and the resource, however a quantitative analysis of radar reflectivity is not 

feasible right now. Much focus was placed on validating the use of 2‒5-km UH to validate potentially 

tornadic storms, as a result we were not able to revisit this issue and opt to retain the current analysis as is.  

We did however correct the color scale of the simulated radar plots to match that of the observed 

composite reflectivity. 

b.  Tables 3, 4, and 5 would benefit from adding a column/row summarizing the same respective statistics 

for Ivan storm reports (i.e., the observations). 

The authors have given your comment much thought, and we decided to refrain from including this 

information. 

c.  Your choice of the “representative” supercells during each time period does not provide confidence the 

simulation was effectively producing the often-observed and previously documented “miniature” 

supercells.  However, you make a brief note that smaller supercells were observed (i.e., “…maximized 

vertical vorticity and velocity over 3‒4 km in depth, with some storm tops reaching up to 10 km”).  

Therefore, I recommend providing examples of the apparently more common “miniature” supercells 

produced by the simulation.  

We understand your concern and decided for the sake of brevity to focus on those particular cells.  Below 

are a few examples of possible miniature supercells, all of which had low-level rotation at 500 m (not 

shown):    

http://www.rms.com/models/hwind
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d.  As briefly noted on Page 5 (RHS), your preliminary results suggested that updraft helicity (UH) was an 

effective metric to identify TC supercells, which contrasted with Green et al. (2011) and their analysis 

of simulated outer rainband supercells in Katrina. More importantly, the reasons why Green et al. found 

UH to be a poor identifier were not discussed—both their simulated and observed supercells were 

shallow and exhibited considerable vertical tilt.  In your case, the high storm tops (~13 km) for each 

representative supercell raises concern as to whether your Ivan simulation was effectively simulating the 

“miniature” supercells observed in TCs. 

Your concern is valid, however we were able to simulate miniature supercells and included examples, as 

suggested by comment 1c. 

2.  Your TC tornado surrogate (TCTS) identification algorithm would benefit from more carefully selected 

criteria that ensure the identified UH maxima are indeed strong rotating updrafts (rather than primarily a 

strong updraft or primarily a strong vertical vorticity maximum). For example, Morin and Parker (2011) 

set minimum thresholds for both vertical vorticity (>0.01 s
‒1

) and vertical velocity (>10 m s
‒1

), resulting 

in a minimum UH of 550 m
2
 s

‒2
 for identification of an outer rainband supercell.  Based on your tabular 

statistics, only a very small fraction of your “data points” exhibited UH greater than such value.  What 

fraction of your identified TCTS satisfy these two criteria (or even lower combined thresholds)?  Also, 

how does the application of a lower simulated radar reflectivity threshold (i.e., less than 30 dBZ) affect 

your results? 

UH is resolution-dependent. Morin and Parker (2011) chose that threshold based on the distribution of 

their UH values in their highest-resolution domain (667 m).  The highest-resolution domain within the 

present study is 1 km, and therefore will not have UH values directly comparable to what was found in 

Morin and Parker.  We did employ similar thresholds for vertical vorticity and vertical velocity when 

identifying potentially tornadic supercells.  

Reducing the reflectivity threshold from 30 dBZ to 25 and 20 dBZ increased the number of TCTSs, but not 

significantly. The largest increase in surrogate generation was found when removing the criterion. 

3.  The authors appear to assume that each grid point that exhibits extreme UH at each 5-min output 

interval constitutes a unique TCTS, without accounting for contiguous grid points that exceed the 

extreme UH threshold at a given time and/or the same simulated TCTS that persists for multiple output 

intervals. In other words, observations of TC supercells/tornadoes suggest: a) unique supercells have 

horizontal dimensions of 4‒6 km (based on the diameter of the updraft and/or vorticity maximum) and 

thus a simulated supercell (identified via UH) on a 1-km or 3-km grid should embody 4‒36 contiguous 

grid cells; and b) tornadoes are NOT observed in “families” with each family member located 1‒3 km 

apart.  Rather than focusing on an optimal UH threshold based on a grid cell count, the authors need to 

focus on identifying unique (but realistic) TCTS events, and then comparing the simulated and observed 

event counts. 

This is a very good point, however the authors do not intend to imply that each gridpoint is suggested to 

constitute a unique tornado, for the very reasons you described in your comment.  TCT surrogates are 

qualitatively compared to the observed reports for their spatial location, not quantitative value.  Instead, 

the PDC for both observed TCT tracks and simulated TCT surrogates are compared.  Focusing on specific 

events is beyond the scope of this research at this point in time, given the lack of resolution required to 

explicitly resolve simulated tornado events for fair comparison to observations. 

4.  The rotation tracks discussed in Section 3d are tangential to this overall study and should be removed 

(including its methodology discussed in section 2c).  All previous discussion in this manuscript focused 

on the numerical simulation, and then you briefly switch to an analysis of operational Doppler radar 

data.  Moreover, the provided discussion is very weak and incomplete.  For example, there is a clear 

range dependence to your results that was documented and discussed decades ago by Spratt et al. 

(1997). The logical next step would be to develop a range-dependent algorithm that would more 
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effectively identify rotation signatures (possible TCTs) of similar intensity but at far ranges.  Therefore, 

a quality evaluation of using rotation tracks as an alternative source for TCT identification would be 

better addressed in a separate manuscript. 

The authors appreciated this honest recommendation. Doing a more comprehensive evaluation of the 

rotation tracks data during landfalling TCs was beyond the scope of this current work. Therefore, the 

authors agreed to remove the discussion of the rotation tracks. 

[Minor comments omitted...] 

 

Second Review: 

 

Reviewer recommendation:  Accept. 

 

Summary: The authors have either adequately addressed my previous concerns or explained why 

addressing such concerns were beyond the scope of the current study.  The revised manuscript now 

provides a concise, case-specific example of how CAMs may provide useful forecast information regarding 

TC tornadoes once additional detailed simulations and verifications can be conducted.  I have no further 

significant concerns at this time, and I support its publication. 

 

 


